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Abstract

Recent advances in machine learning have been able to make improvements over the state-of-the-

art regarding semantic similarity measurement techniques. In fact, we have all seen how classical

techniques have given way to promising neural techniques. Nonetheless, these new techniques have

a weak point: they are hardly interpretable. For this reason, we have oriented our research towards

the design of strategies being able to be accurate enough but without sacrificing their interpretability.

As a result, we have obtained a strategy for the automatic design of semantic similarity controllers

based on fuzzy logics, which are automatically identified using genetic algorithms (GAs). After an

exhaustive evaluation using a number of well-known benchmark datasets, we can conclude that our

strategy fulfills both expectations: it is able of achieving reasonably good results, and at the same

time, it can offer high degrees of interpretability.
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1. Introduction

The computation of semantic similarity has been traditionally considered as an important method

in many areas of computer research since methods of this kind are very important for successfully
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addressing a number of complex problems [41]. Automatically determining a similarity score for a

pair of terms or textual expressions based on their real meaning is a problem that has attracted a

multitude of researchers and practitioners belonging to a number of distant disciplines due to the fact

that it has a number of implications in many application-oriented fields of different nature: computer

science, linguistics, translation, literature, etc. However, finding a solution is far from being trivial

since textual expressions usually lack objective features for fair comparison.

To overcome this problem, current trends on semantic similarity measurement follow an approach

based on the aggregation of scores retrieved from individual semantic similarity measures (ssm) that

make use of a wide range of heuristics and external resources. In this way, it is possible to reduce the

risk of relying on a single ssm operating within production environments. Moreover, this approach

has proven to achieve good results in the past [15]. The rationale behind this way of working is very

intuitive; if there are some specific ssm not being able to perform reasonably well for the particular

comparison of terms or textual expressions, their effects can be blurred by others ssm that achieve

better performance. In this way, an overall improvement can be achieved, or put another way, the

risk of making a severe mistake is greatly reduced. In general, aggregation methods try to combine

different measures to come to the final decision.

In the particular context of semantic similarity measurement, recent advances of machine learning

for natural language processing [54] have achieved a considerable increase in accuracy. In fact, training

machine learning algorithms on large textual corpora has emerged as a powerful approach performing

as well as traditional methods obtained after many years of research and fine-tuning [40]. One of

the reasons why such approaches has achieved such good results is its inherent adaption capability.

Artificial Neural Networks (ANNs) can be automatically configured in order to optimize the recogni-

tion of complex patterns. However, some authors suggest that new approaches based on ANNs are

hardly interpretable [4, 5, 18]. This means that these models tend to behave like black boxes, i.e. it is

possible to provide them with an input and get an output, but without the opportunity to understand

what has happened in the intermediate process.
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Therefore, even though there are already a number of solutions for aggregating semantic similarity,

there are still some gaps that make the results not yet totally satisfactory. One of these major gaps

is that state-of-the-art approaches have not been designed to handle the notion of interpretability.

To overcome this limitation, we have worked towards the automatic design of semantic similarity

controllers, which are systems that analyze semantic similarity values in terms of logical variables

and produces a meaningful score by means of a complex, yet human-understandable, aggregation

strategy. The key to achieving such good levels of interpretability is given by the fact that their

behavior can be explained using rules that are easily understandable to humans. Moreover, this kind

of logic controllers allows modeling nonlinear functions in the same way that ANN can, since both

are considered universal approximators [14]. The reason for that is that we can approximate any

nonlinear function if the search-space is divided into enough fuzzy sets. In any case, the success of

such an approach is usually determined by the selection of those fuzzy sets (including their boundaries

and membership functions), and the appropriate choice of the rules and defuzzification method. In

this work, we aim to do so by using a genetic algorithm (GA) to help us optimize the process. Thus,

we can summarize the major contributions of this work as follows:

� We introduce our research towards the automatic design and development of semantic similarity

controllers being able to be accurate enough but without sacrificing its interpretability. In fact,

our approach is able to achieve results in line with the best approaches, and at the same time,

explain how these results have been achieved according to the IEC 61131-7 norm [34].

� We evaluate our strategy for the automatic creation of semantic similarity controllers using a

wide pool of representative methods and datasets for semantic similarity including those intended

for the general purpose, geospatial similarity, and biomedical similarity.

The remainder of this work is organized as follows: Section 2 introduces the state-of-the-art in

relation to the design of controllers based on fuzzy logics. Section 3 presents the technical preliminaries

necessary to understand our contribution. Section 4 describes our technical approach for the design
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and development of semantic similarity controllers. Section 5 reports an empirical evaluation of our

proposal using a wide pool of datasets for semantic similarity. Finally, we highlight the conclusions

and future research lines that could be derived from this work.

2. State-of-the-art

Fuzzy logics provides a framework for the representation of knowledge that allows modeling of the

imprecision inherent in the human cognitive processes. In this way, fuzzy systems can be designed to

solve a wide variety of problems dealing with complex situations involving vagueness and uncertainty.

The problem here is that it is usually necessary to ask domain experts for designing the complete

system, and therefore, the process becomes usually expensive in terms of money, time and effort

needed. For this reason, it is unrealistic that the most appropriate setup can always be provided by

those experts. That is one of the main reasons for the emergence of methods that try to automatically

build Fuzzy Logic Controllers (FLCs) [29]. However, the generation of fuzzy terms and rules being

easy to understand and to be reused in a variety of problems have traditionally been, and still is, one

of the most challenging problems for the research community [20].

Concerning the specific challenge of semantic similarity measurement [50, 52], there are some works

addressing the issue of how to use fuzzy logics in order to measure the degree of semantic similarity of

text expressions [49, 27, 64]. The reason is that fuzzy systems are very suitable for dealing with the

uncertainty and the ambiguity associated with the human language. In fact, the development of fuzzy

logic emerged from the need to provide a framework to capture some of the uncertainties associated

with cognitive activities such as the language used by people. This makes fuzzy logics a useful tool

for modeling complex scenarios by means of fuzzy terms and rules [36]. Therefore, we think that it

can help us in designing a conceptual framework to deal with the challenge of measuring semantic

similarity and its inherent problems.

On the other hand, and since we are especially interested in the interpretability of our solution,
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the scientific community has proposed a number of different techniques to handle the so-called in-

terpretability versus accuracy tradeoff. In particular, the use of FLCs is broadly extended due to

their great capability of considering many different criteria [18]. In this context, given the non-linear

nature of the output, traditional linear optimization tools have several limitations. However, GAs

have proven to overcome these limitations by being a reliable method for optimizing the fuzzy terms

and the associated fuzzy rules [6]. As a result, there has been a growing interest on the part of the

community in the development of algorithms for automatically tuning FLCs that exploit these bio-

inspired computing methods in order to benefit from the good search capabilities they offer. In this

particular context, genetic fuzzy systems have been the subject of in-depth research [2, 1, 12, 28, 35]

in last decades. The rationale behind these systems is that most of the components of a FLC can be

obtained by using a GA [60]. In addition, their capability to incorporate existing knowledge [51] is

also a very interesting characteristic in certain cases where is mandatory to impose some constraints

[47].

It is also worth noting that there are already a number of approaches to automatically design

FLCs to solve various problems in different application domains; the basic approach consists of just

considering parameter identification, i.e. proper adjustment of the parameters of the membership

functions, constrained by a previously known rule structure. The great drawback of such approach

is that the structure needs to be known before the identification process. Another way to that is

the so-called Michigan approach [13]. In that approach, the chromosomes are individual rules and a

rule set is represented by the entire chromosome population. The collection of rules evolves over time

through the evolutionary strategy that means that the different fuzzy rules need to cooperate under

the action of the GA in order to achieve optimal results.

In this work, we deal with a variant of the so-called Pittsburgh approach [62] whereby the complete

rule set is encoded within the same chromosome. However, in our approach not only the rules, but

the complete FLC is encoded within a chromosome. This allows for the simultaneous evolutionary

learning of all components together with the goal of generating the best possible design, even though
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this implies a broader search space. A solution scheme like this was already proposed in [31]. However,

the novelty of our approach is that it is the first attempt to overcome the limitations of traditional

semantic methods by automating the design of FLCs being able to asses the semantic similarity of

textual expressions. In relation to existing works in the field of semantic similarity, our approach

has the advantage of being able to conciliate computational capabilities of GAs with the human way

of working of fuzzy systems, which leads to a similarity aggregation strategy being able to achieve

reasonable levels of accuracy, and at the same time, being easily interpretable by a human, as we will

be detailed in the next sections.

3. Technical Preliminaries

In the context of this work, a ssm is defined as a function intended to map the likeness of textual

representations into a real value in the real interval [0, 1]. This function ssm: µ1 x µ2 → R associates

the degree of likeness for the textual expressions µ1 and µ2 to a real value v in the range [0, 1], whereby

a value near to 0 means not similarity at all, and near to 1 indicates the absolute similarity of the

textual expressions µ1 and µ2 [11]. This is mainly due to the fact semantic similarity judgment is not

always true or false, but obtains a certain degree of plausibility, depending on how well it reflects the

human way of judging. According to Ballatore et al., most of existing terms could be semantically

similar, at least, to some limited extent. Therefore, their degree of semantic similarity should be

represented as a real value, instead of defined by using just a binary category [8].

There is a fundamental core of ssm covering different features from the natural language. In this

context, the exploitation of background knowledge sources such as dictionaries, thesauri, large text

corpora, and so on are among the most used methods by researchers and practitioners in this field.

However, the real problem can be observed when each of these methods suggests different scores for

the same particular case. A number of methods have been proposed in order to smartly aggregate

the results of different approaches. In the literature, it is possible to observe how many of them have

succeeded by overcoming the traditional limitations from simple ssm [46].
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In this context, aggregation can be formally defined as a function aggr : [0, 1]n → [0, 1] that is often

carried out by an aggregation operator. These operators are mathematical transformations aiming to

aggregate information from two or more different sources. For example, the arithmetic mean and the

weighted mean are some of the most well-known aggregation operators. The major difference between

them is that the weighted mean allows giving more importance to the different inputs according to

some predefined relevance. In the literature, there is an important number of different aggregation

operators that differ in the characteristics and the data they can work with [24]. But aggregation

operators should always allow observing the following mathematical properties:

� Identity: For a single input x, f(x) = x

� Boundary condition: For f involving initial values N times so that, f(0, 0, ..., 0) = 0 and

f(1, 1, ..., 1) = 1

� Monotonicity: For any pair ⟨a1, a2, ..., an⟩ and ⟨b1, b2, ..., bn⟩ of n-tuples such that ai, bi ∈ [0, 1]

for all i ∈ Nn, if ai ≤ bi for all i ∈ Nn, then f(a1, a2, ..., an) ≤ f(b1, b2, ..., bn).

� Continuity : f is a continuous function.

However, the problem here is that all of these traditional methods (means, medians, modes,

weighted means, etc.) often do not work well in the context of semantic similarity because they

are based on very short-sighted strategies, i.e. strategies that just consider the numeric values of the

inputs instead of analyzing the relationships among them [49]. Therefore, it seems a good idea to rely

on fuzzy logics to try to model a problem that allows handling in a natural and intuitive way some

of the aspects associated with the human language. In particular, fuzzy aggregation operators have

been used recurrently in order to implement advanced reasoning mechanisms capable of overcoming

a broad range of short-sighted strategies.

In this respect, some examples of fuzzy aggregation operators are fuzzy integrals and weighted

sums [10]. These operators are intended to solve a wide variety of group decision-making problems
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[32]. However, it is very common to find situations where these aggregation operators are not adequate

to deal with a problem, since it is not always possible to know the model in advance. For cases like

this, the research community has a great deal of expertise in developing solutions based on some kind

of fuzzy reasoning implemented by means of rules. These rules allow for incorporating knowledge to

be represented into the fuzzy system [3]. In addition, one of the great advantages of fuzzy systems

that make them very suitable for our problem is that the working mode can be easily adapted to take

a number of variables as input, and produce an unique output, which makes it a natural solution to

the problem of aggregating semantic similarity [48].

Finally, it is important not to forget the role of the defuzzification process, i.e. the way in which

a resulting set can be transformed into a real number. This is mainly due to the fact the output of

the inference phase consists of fuzzy sets, which is largely undesired in many applications as ours. So

in order to achieve the real number that represents the result from the aggregation process, we need

a method that can generate a score from the resulting fuzzy sets. Although a detailed discussion of

defuzzification methods is out of the scope of this work, good overviews of defuzzification strategies

can be found at [26].

Example. When considering the semantic similarity of the words journey and voyage, human

judgment has identified a similarity of 0.96 between them. If we want to replicate human judgment

by means of an automatic system, we can rely on different measures exploiting their own strategies.

We have tried five, and we got that ssm1: 0.17, ssm2: 0.80, ssm3: 0.69, ssm4: 0.47 and ssm5: 0.82.

However, it seems that none of them is able to provide a satisfactory result. It would be possible to

try to calculate a kind of mean, but the discordant results do not usually allow a good final result

to be achieved. Therefore, the solution is to use semantic similarity controllers, where each value is

encapsulated (to some extent) in one or more classes that roughly correspond to the way humans

handle natural language: similar, not similar at all, very similar (a.k.a. fuzzification). Then it is

possible to check which class or classes are the most represented (a.k.a. fuzzy reasoning), and finally,

it is possible to map the resulting class(es) into a value similar to the one we were looking for (a.k.a.
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defuzzification). As a result, if the semantic similarity controller is appropriately designed, then it

can be able to properly compute new similar cases.

Therefore, we want to build a kind of FLC, i.e. semantic similarity controller, being able to decide

whether a pair of textual expressions could be considered semantically equivalent or not. However,

the overall problem here is that it is often difficult or unrealistic for human experts to define the fuzzy

terms and fuzzy rules for this problem. In order to appropriately deploy that controller, it is necessary

to study an important number of aspects such as fuzzy terms, membership functions, overlapping

thresholds, defuzzification methods, etc. Therefore, we propose to formulate the automatic design

from scratch of such controller as an optimization problem whereby the goal is to obtain a configuration

being able to increase the chances of reaching our goal. This goal consists of replicating the behavior

of experts when deciding on the semantic similarity of textual expressions to be compared. In this

particular scenario, GAs have proven to be a useful method for finding configurations of this kind [31].

Therefore, we propose to use GAs to automatically design a semantic similarity controller based on

fuzzy logics being able to achieve at the same time good performance and good interpretability levels.

4. Automatic Design of Semantic Similarity Controllers

The capability to design logic controllers is one of the most important applications of the fuzzy set

theory in order to obtain accurate and human-comprehensible automatic rule-based expert systems.

Logic controllers are usually divided into several components, among which the following stand out:

a database of fuzzy terms such as µS̃ (x) that states the membership of x in S̃ =
{∫ µS̃(x)

x

}
what is

usually defined in the real interval [0, 1], i.e. µS̃(x) ∈ [0, 1], and a non-empty set of fuzzy rules. The

rationale behind this organization is that the fuzzy terms associated with the database can be used

to characterize fuzzy rules. These terms are mathematically defined using membership functions that

are formulated on basis of expertise or engineering needs. The correct choice of these terms plays

an essential role in the success of the FLC’s performance. At the same time, the FLC’s behavior is

characterized by a set of linguistic rules (a.k.a. fuzzy rules) based on expert knowledge. A fuzzy rule
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is a structure like IF (some conditions are satisfied) THEN (some consequences are inferred). Since

the conditions and the consequences of these fuzzy rules are associated with the aforementioned fuzzy

terms, it makes sense to study a solution that considers both of them at the same time. Moreover, it is

necessary to impose some convenient constraints as a way of expressing additional domain knowledge.

In our case, this domain knowledge is oriented to help to improve the interpretability levels in relation

to other problem-solving schemes.

Therefore, the automatic design of our semantic similarity controller is a complex task that com-

prises the automatic identification of (a) the input and output variables, b) the database of fuzzy

terms, (c) the fuzzy rule base, and (d) the defuzzification method. In addition, we are going to make

use of a standard from the International Electrotechnical Commission for fuzzy control programming,

namely IEC 61131-7 [34], in order to rely on a well-known framework aiming to facilitate a common

understanding of the design of our FLC. Listing 1 shows us an example of how the different parts of

a FLC should look like.
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Listing 1: IEC 61131-7 norm

FUNCTION_BLOCK

VAR_INPUT

<variable name > REAL;

END_VAR

VAR_OUTPUT

<variable name > REAL;

END_VAR

FUZZIFY <variable name >

TERM <name > := <coordinates > ;

END_FUZZIFY

DEFUZZIFY

METHOD: <method >;

END_DEFUZZIFY

RULEBLOCK

<operator >:<algorithm >;

ACCUM:<accumulation method >;

RULE <rule number >: IF <condition > THEN <conclusion >;

END_RULEBLOCK

END_FUNCTION_BLOCK

Listing 2 shows a real example of a semantic similarity controller with four inputs that has been optimized to resolve

the Miller & Charles benchmark dataset [55].
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Listing 2: Example of automatically designed controller (1 of 2)

FUNCTION_BLOCK Semantic -Similarity

VAR_INPUT

ssm1 : REAL;

ssm2 : REAL;

ssm3 : REAL;

ssm4 : REAL;

END_VAR

VAR_OUTPUT

score : REAL;

END_VAR

FUZZIFY ssm1

TERM poor := (0, 1) (0.117 , 1) (0.234 , 0) ;

TERM good := (0.234 , 0) (0.351 ,1) (0.468 ,1) (0.585 ,0);

TERM excellent := (0.468 , 0) (0.585 , 1) (1, 1);

END_FUZZIFY

FUZZIFY ssm2

TERM poor := (0, 1) (0.117 , 1) (0.234 , 0) ;

TERM good := (0.234 , 0) (0.351 ,1) (0.468 ,1) (0.585 ,0);

TERM excellent := (0.468 , 0) (0.585 , 1) (1, 1);

END_FUZZIFY

FUZZIFY ssm3

TERM poor := (0, 1) (0.117 , 1) (0.234 , 0) ;

TERM good := (0.234 , 0) (0.351 ,1) (0.468 ,1) (0.585 ,0);

TERM excellent := (0.468 , 0) (0.585 , 1) (1, 1);

END_FUZZIFY

FUZZIFY ssm4

TERM poor := (0, 1) (0.117 , 1) (0.234 , 0) ;

TERM good := (0.234 , 0) (0.351 ,1) (0.468 ,1) (0.585 ,0);

TERM excellent := (0.468 , 0) (0.585 , 1) (1, 1);

END_FUZZIFY
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Listing 3: Example of automatically designed controller (2 of 2)

DEFUZZIFY score

TERM poor := (0, 1) (0.117 , 1) (0.234 , 0) ;

TERM good := (0.234 , 0) (0.351 ,1) (0.468 ,1) (0.585 ,0);

TERM excellent := (0.468 , 0) (0.585 , 1) (1, 1);

METHOD : RM;

DEFAULT := 0;

END_DEFUZZIFY

RULEBLOCK No1

AND : MIN;

ACT : MIN;

ACCU : MAX;

RULE 1 : IF ssm1 IS excellent AND ssm2 IS good THEN score IS good;

RULE 2 : IF ssm1 IS excellent AND ssm3 IS good THEN score IS good;

RULE 3 : IF ssm2 IS excellent AND ssm3 IS good THEN score IS excellent;

RULE 4 : IF ssm2 IS excellent AND ssm4 IS good THEN score IS good;

RULE 5 : IF ssm3 IS poor AND ssm4 IS good THEN score IS excellent;

RULE 6 : IF ssm1 IS poor AND ssm2 IS good THEN score IS poor;

RULE 7 : IF ssm3 IS good AND ssm1 IS good THEN score IS good;

RULE 8 : IF ssm3 IS excellent AND ssm2 IS excellent THEN score IS good;

RULE 9 : IF ssm2 IS excellent AND ssm4 IS poor THEN score IS good;

RULE 10 : IF ssm4 IS good AND ssm3 IS good THEN score IS excellent;

END_RULEBLOCK

END_FUNCTION_BLOCK
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Our task here is to automatically design from scratch a IEC 61131-7 [34] program leading to

overcoming existing aggregation strategies for semantic similarity. To do so, we are encoding each of

the aspects of such program (membership functions, fuzzy rules, defuzzification method, operator and

accumulation method) as genes in a chromosome. An appropriate choice and organization of genes

into chromosomes is very important in terms of the effectiveness and efficiency of the evolutionary

strategy. In this way, and in order to avoid an explosion of the number of genes necessary to encode

a chromosome, we have to be very careful to avoid an over-saturation of parameters that makes the

design process unfeasible due to its high computational cost. Therefore, in the scope of this work, we

will refer to the design by just using just the Basic Level language elements mentioned in the IEC

61131-7 norm.

As a result, and unlike neural solutions based on machine learning, where the model needs to

be trained using a vast network of nodes interconnected to each other by means of edges with an

associated weight, this proposal allows obtaining a human-readable program that facilitates to study

and understand the mechanism of aggregation of the different ssm. In order to do so, our evolutionary

strategy will be additionally constrained by a set of good practices leading to the obtaining of a very

interpretable FLC. Then, that FLC can then be put into operation with the certainty that it will

ensure better results than could be obtained with single methods and/or short-sighted aggregation

strategies.

4.1. The input and output variables

On the one hand, the input variables are a type of linguistic variable that can take the values

of fuzzy terms present in the database. Concerning this type of variables, the user will identify the

most suitable ones at the beginning of the process. The idea is that the user provides a wide and

heterogeneous group of different ssm using different text corpora, dictionaries or thesauri so that the

decisions made by the FLC can be supported by a wide range of viewpoints. Since most of existing

methods provide results in the real interval [0, 1] (or in its defect these results can be easily normalized
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in this interval), these will be the values that will be fuzzified according to the linguistic terms of the

database, so that Ĩ = µ1Q (x1) + µ2Q (x2) + ...+ µnQ (xn), whereby µi is the fuzzy term associated

with the transformation of xi into the fuzzy set Q(xi).

On the other hand, our FLCs work with the so-called Mamdani fuzzy inference [45] what means

that the result of the inference inside the FLCs will be a fuzzy set such as Õ =
{∫ µÕ(v)

v

}
. Therefore,

we need a way to get the output variable as a numerical value in the real interval [0, 1] representing

the result of the process of aggregating the different ssm. In order to do that, the definitive result

will be delivered by means of a defuzzification method over the resulting fuzzy set. The most suitable

defuzzification method will be identified by the evolutionary strategy.

4.2. The membership functions

Fuzzy terms are defined based on membership functions so that: T̃ =
{(

x, µT̃ (x)
)
| x ∈ U

}
.

These functions are usually not complex since it is assumed that complexity do not improve precision

in this context. Some examples of fuzzy terms are the memberships to WordNet1 classes and other

Knowledge Bases such as Wikipedia2. In theory, it is possible to use many points to define membership

functions, but in practice, a wide range of membership functions can be defined by just making use of

four points: left lower and upper corners, and right lower and upper corners. This makes it possible

to design a wide range of well-known shapes: square, trapezoid, shoulder, triangle, singleton, etc. The

real values provided by the input variables can then be fuzzified as the linear interpolation between the

two adjacent membership function points. Figure 1 shows us an example of some types of membership

functions that can be obtained with just four points.

In our approach, the four points that define the membership functions are coded as genes in the

chromosome representing each possible FLC. Just like the rest of the elements, the final membership

functions will be those that the evolutionary strategy determines are the most appropriate to obtain

1https://wordnet.princeton.edu/
2https://www.wikipedia.org/
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Figure 1: Examples of membership functions that can be defined with four points (shoulder, singleton, trapezoid,

triangle, and rectangle)

the desired result according to the given input. In this way, if the designer decided to work with four

different fuzzy terms (for example: very bad, bad, good and very good), we would need 4 · 4 = 16

different coordinates that would be automatically identified by the evolutionary strategy.

4.3. The fuzzy rule base

The fuzzy rule base stores the knowledge concerning the operation of the aggregation process.

This knowledge is expressed by assigning relationships between fuzzy inputs and outputs. However,

as mentioned above, it is unrealistic for an expert to be able to define these fuzzy rules in this context,

and therefore we are preparing to generate them artificially. In order to avoid any assumptions on the

rule structure, our approach is able to operate at symbolic level with some restrictions that limit the

search space that would otherwise be unattainable. In our case, we allow the conditions of each fuzzy

rule representing a statement or a combination of a maximum of two statements via the input variables,

while the conclusion determines one single output. Other aspects that we will take into account are:

we will only have one ruleblock, since having a many could hinder interpretability. Concerning the

way to combine statements in the fuzzy rules, it is well-known that operators AND and OR must be

used pair-wise in the following way: MAX corresponds to OR and MIN corresponds to AND [17]. In

this work, we just allow AND combinations, since the OR combination can be achieved by means of

two different rules.

It is also important to note that the controller being designed needs to calculate the degree of

matching of the fuzzy rules, and then infer the resulting fuzzy sets. The inference system produces

the same amount of output fuzzy sets as the number of rules collected in the rule base. These groups
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of fuzzy sets are aggregated by an accumulation operator, but they must be transformed into real

values. Our accumulator operator will be also identified by the evolutionary strategy.

4.4. The defuzzification method

As a result of applying the previous step, we get always a fuzzy set. Therefore, we need a way to

convert this fuzzy set into a real value. The defuzzification method will be also encoded as a gene into

the chromosome. We are considering here those methods referenced in the IEC 61131-7 norm [34],

i.e. Centre of Gravity, Centre of Area, Left Most Maximum, and Right Most Maximum as defined in

[26]. The evolutionary strategy will automatically identify the most suitable one.

4.5. FLC identification

In our work, each of the parameters of the FLC is encoded as a gene into a chromosome. In general,

the size of the population heavily depends on the nature of the scenario to be faced, but usually contains

from dozens to thousands of possible solutions. The initial population is usually randomly generated,

which it allows to look for the full range of possible solutions3. During each iteration, a portion of the

existing population is selected to raise a new generation. Individual solutions are selected through

an elitist process, where the best solutions are identified through the computation of the fitness (i.e.

quality value for a solution). Our evolutionary strategy evaluates the suitability of each solution and

selects the best solutions at each iteration. This is done through the maximization of the correlation

coefficient between the human and artificial results.

In this context, the solution vector is highly dependent on the desired configuration for the semantic

similarity controller which has to be automatically designed. This is mainly due to the need to

encode the coordinates for the fuzzy terms, a number of rules, an accumulation operator, and the

defuzzification process. Our solution is designed to accept up to N values, although the usual case is

to work with configurations between 4 and 6 inputs. For example, in the specific case of a 4-input

3Although in principle there would be no restriction to use domain knowledge to start working with a good FLC
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controller with 10 rules, the solution vector would consist of 68 values, which would be distributed

as follows: 16 real values between 0 and 1 (4 coordinates for each of the 4 fuzzy terms), 50 discrete

values for the fuzzy rule base (a maximum of 2 antecedents and 2 consequents and 1 conclusion for

each of the 10 rules), 1 discrete value to identify the accumulation operator, and 1 discrete value to

identify the defuzzification process.

Although there are many possible variants of the basic GA, we work here with a classic elitist

strategy since it is what is best suited to our goal of maximizing both precision and interpretability.

In fact, our approach consists of three major operations: evaluation of individual fitness, a compilation

of the intermediate population through a selection procedure, and combination through crossover and

mutation strategies. Anyway, we are performing a preliminary study to assess the specific configuration

for each operation [39].

Algorithm 1 Pseudo-code for the evolutionary strategy to obtain the final FLC

1: procedure Automatic Design of FLC

2: generationRandomFLCs (population)

3: calculateFitness (population)

4: while (stop condition not reached) do

5: for (each individual of the population)

6: parents ← selectionOfIndividuals ()

7: offspring ← binCrossOver (parents)

8: offspring ← randomMutation (offspring)

9: calculateFitness (offspring)

10: population ← updatePopulation (offspring)

11: endfor

12: endwhile

13: return automaticallyDesignedFLC (population)

Algorithm 1 explains in pseudo-code how the whole process is performed; at the beginning, the

18



chromosome population (i.e. the FLC population) is randomly initialized. According these initial

parent chromosomes produce off-spring by the application of genetic operators: selection (i.e. identi-

fication of the genes to be chosen for evolution), crossover (i.e. combination of the information of two

solutions from the population), and mutation (i.e. random change in a specific part of the solution).

Selection is performed for the whole population. The operator selects which chromosomes should

remain in the population and set up the crossover. Crossover and mutation are conducted separately

on each part of the chromosome so there is no exchange of information between the parameters and

the structure. For a more detailed explanation about the GA, please consult the original reference

[30].

During the process, the evolutionary strategy is guided towards the goal of maximizing the results

of the FLC that is being considered in relation to the results given by a human for the same input

data set. This is done by comparing the degree of correlation between the background truth (i.e. the

set of past cases solved by the experts in the specific field and which are assumed to be accurate)

and the results issued by the controller. As we wish some predictive capability, we must also consider

cross-validation when calculating the fitness. The Pearson Correlation Coefficient between these two

numerical vectors can be formally defined using the following formula (where x is the numerical

vector representing the results from those cases solved by a human expert, and y the numerical vector

representing the results of those cases solved by the computer):

rxy =
n
∑

xiyi −
∑

xi

∑
yi√

n
∑

x2
i − (

∑
xi)2

√
n
∑

y2i − (
∑

yi)2

Concerning the implementation, the fuzzy engine chosen in order to test the fitness of each gener-

ated model has been jFuzzyLogic [17] as it combines a friendly programming interface with a rigorous

implementation of the IEC 61131-7 norm.
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4.6. Interpretability as a requirement

According to Cordon et al., accuracy has been during many years the major goal of researchers and

practitioners in this area [20]. The problem is that this fact has made the resulting fuzzy systems a

kind of black-box model which is hard to interpret. However, in recent years, the scientific community

has come back to its origins when considering design techniques by formulating the problem as an

optimization of the accuracy and interpretability at the same time [19].

In this context, it is clear that interpretability is a quality that is not easy to define or quantify.

However, there is a number of works in the literature that remark the advantages of fuzzy logics

in order to overcome the limitations of traditional logic to work with imprecise rules that are very

descriptive and easily understood by people at the same time [3, 4, 23, 29]. Moreover, several works

have addressed the problem of considering interpretability in the design of fuzzy systems. In the

context of this work, we are going to assume that the interpretability requires at least4:

� Small number of fuzzy rules. Some empirical studies state that this amount should be preferably

no more than ten [4]. The reason is that fuzzy systems with a large amount of rules are usually

more difficult to interpret than those systems that only need a few rules.

� Small number of fuzzy terms. This aspect is key in the whole design process as both the

accuracy and interpretability of our solution might rely on them. Having a sufficient number of

fuzzy terms is of vital importance to capture nonlinear functions. However, good practices on

interpretability suggest keeping this number small. In this work, we have decided to adopt a

compromise solution, allowing to have the same number of fuzzy terms as input variables.

� No overlapping of more than two membership functions. This fact helps to enhance the inter-

pretability of the model since it keeps the fuzzy terms distinguishable. Moreover, the relative

position of the fuzzy terms has to be maintained.

4Including additional interpretability considerations would be trivial
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� Completeness of the fuzzy partitions. The fuzzy partitions have to be complete. This complete-

ness condition makes it possible to assign a clear and unique meaning to each fuzzy term.

� Consistency of the fuzzy rules. This means that the fuzzy rules of the FLC do not have to

be inconsistent. An inconsistency problem happens when two different rules have the same

conditions but different consequences.

So the GA takes into consideration these constraints in the following way: getting the number of

rules and the fuzzy terms to be low is a trivial task, since we only have to indicate the maximum

number of rule slots and fuzzy terms that we need when coding the chromosome. No overlapping

of more than two membership functions can be achieved by forcing the lower coordinates of those

functions to be chained to each other, and imposing that only two successive links of the chain can

be overlapped. Completeness is guaranteed by forcing both position 0 and position 1 of the X-axis to

be covered (Furthermore there can be no gaps as the lower coordinates of the membership functions

are chained). Finally, when two fuzzy rules have the same conditions but different consequences, we

assign to that solution the minimum fitness so that it does not have options to be reproduced.

5. Results

We summarize here the results from the experiments that we have performed. It is important to

remark that the comparison between the scores from our automatically-designed semantic similarity

controllers and the human judgments can be expressed as a correlation between two numerical vectors

of the same size, whereby each position of the vector indicates an entry in the semantic similarity

datasets. This means that we aim to obtain the degree of similarity between the results from our

approach and human judgments. To do that, we have considered some of the most widely used

datasets from a number of different fields: general purpose, geospatial similarity, and biomedical

similarity.
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The rationale behind this way to measure similarity is to compare the degree of correlation between

an artificial and a natural solution using the Pearson correlation coefficient. Each of both solutions

contains all the similarity scores associated with each particular case from the benchmark dataset.

The final result will be between the values -1 (human ratings and results from the proposed solution

present an opposite correlation) and 1 (human ratings and results from the proposed solution present

a perfect correlation). Obviously, our challenge here is to get a result as close as possible to 1, what

means that our approach could properly replicate the way of thinking of the experts who initially

solved the benchmark dataset. In addition, it is also necessary to perform a significance test in order

to determine if the null hypothesis can be accepted or rejected in all the experiments performed. We

estimate a threshold for the p-value parameter as the usual 5.0 · 10−2, what means that achieving a

statistically significant correlation can be interpreted so that there is less than a 5% chance that the

given correlation happened by chance.

5.1. Experimental setup

It is important to mention that when solving each case from a benchmark dataset for semantic

similarity assessment using artificial methods, we are always facing one of these three situations: a)

false positive, i.e. a result which wrongly indicates that the two textual expressions are semantically

similar, b) false negative which wrongly indicates that the pair is not semantically similar, and c)

hit, i.e. result which correctly indicates whether the two expressions being compared are semantically

similar or not. In this work, we look for the largest number of hits (or the lowest number of false

positives and false negatives together), and to achieve this we have performed a preliminary study

from which we have concluded that the configuration of our GA should be the following:

� Representation of genes (binary, real): real

� Population size [10, 100]: 50

� Crossover probability [0.3, 0.95]: 0.5
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� Mutation probability [0.01, 0.3]: 0.09

� Iterate over 100,000 generations

After having performed a parametric study consisting on experiments from 1,000 to 100,000 itera-

tions, we have concluded that the best results are obtained on average after around 45,000 iterations.

However, in order to ensure the proper functioning of the system for the most complex benchmark,

and taking in consideration that no temporal restriction is required, we have established the value of

the iterations at 100,000. In this way, this configuration ensures a good performance for the simplest

benchmark, but also for the most complex one.

In addition, it is necessary to mention that the results reported in next subsections are the result

of a cross-validation process with 80% of the instances for training and 20% for validation what is the

most common split used in problems of learning non-linear metrics [38]. Moreover, the experiments

have been performed in a computer with Windows 10 64-bit over a processor Intel Core i7-4790 at

3.60Ghz and 8 GB of RAM memory. As an example, we can mention that the automatic design of

a FLC aiming to aggregate 4 ssm and needing 100,000 iterations takes about 12 hours of processor

time. Please note that it is not just matter of the dimension of the solution vector and the size of

the associated solution space, but the execution and the cross-validation also contribute with large

overheads to the automatic design process.

5.2. General purpose semantic similarity

The first dataset that we use is the so-called Miller & Charles [55] which is the traditional dataset

used by the community to evaluate research approaches focused on general scenarios. Table 1 shows

us this dataset which is intended to measure the semantic similarity between terms belonging to a

general purpose scenario, that is to say, terms that one can find in numerous everyday situations.

Samples from this dataset range from pairs that do not look alike at all (rooster and voyage) to other

pairs that are absolute synonyms (automobile and car). The values are included in the real interval
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[0, 4] but can be very easily normalized in the real interval [0, 1] because the Pearson correlation

coefficient is invariant against the linear transformation.

Wordpair Human Wordpair Human

rooster-voyage 0.08 crane-implement 1.68

noon-string 0.08 brother-monk 2.82

glass-magician 0.11 implement-tool 2.95

chord-smile 0.13 bird-crane 2.97

coast-forest 0.42 bird-cock 3.05

lad-wizard 0.42 food-fruit 3.08

monk-slave 0.55 furnace-stove 3.11

shore-woodland 0.63 midday-noon 3.42

forest-graveyard 0.84 magician-wizard 3.50

coast-hill 0.87 asylum-madhouse 3.61

food-rooster 0.89 coast-shore 3.70

cementery-woodland 0.00 boy-lad 3.76

monk-oracle 1.10 journey-voyage 3.84

car-journey 1.16 gem-jewel 3.84

brother-lad 1.66 automobile-car 3.92

Table 1: Samples from the Miller-Charles benchmark dataset

For this dataset, we have achieved a correlation coefficient of 0.855. Figure 2 shows the distribution

of the results for the different cases that make up the benchmark. The ssm chosen for performing

the aggregation have been Jiang & Conrath [37], Leacock & Chodorow [42], Lin [44], and Resnik [58].

All these semantic similarity measures are based on the exploitation of human-compiled dictionaries

what makes it possible to achieve a high degree of interpretability. As we can see, the behavior of our

automatically designed controller is close to human judgment. There are many hits, and there are not

serious false positives. However, the results are not perfect because there are some false negatives.

For further information about the intermediate results, please refer to Appendix A.

5.3. Geospatial semantic similarity

The second dataset comes from the geospatial field. The so-called GeReSiD [8] covers a pool of

geographic terms including almost 100 unique textual expressions that have been clustered into 50

unique pairs. The human judgments of semantic similarity have been collected separately on the 50
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Figure 2: Results achieved over the Miller & Charles dataset

pairs. Table 2 shows us these 50 pairs which range from samples that are not similar at all (nursing

home & continent) to other ones that are almost identical (motel & hotel) according to the human

opinion.

For the GeReSiD dataset, we have achieved a correlation coefficient of 0.726. Figure 3 shows the

result distribution that we have obtained. The ssm that we have chosen for being aggregated using

our FLC have been UMBC and UMBC-STS [25], and LSA and LSA2 [21]. As it is possible to see

the FLC does a great job of getting right the cases in which there is no similarity at all as well as the

cases in which the similarity is almost total. However, the results are not absolutely perfect due to

some cases of intermediate similarity. For having an overall view of the intermediate results, please

refer to Appendix B.

5.4. Biomedical semantic similarity

MeSH dataset [56] is one of the most popular datasets for assessing semantic similarity of biomed-

ical nomenclature. It is assumed that a method that is capable of achieving good results using this

dataset should be able to support indexing and retrieval of biomedical articles stored in heterogeneous

databases. This dataset is composed by a set of 36 word-pairs extracted from the MeSH ontology,

and it ranges from pairs that are absolutely different (Anemia & Apendicitis) to other ones that are
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expr1 expr2 human expr1 expr2 human

nursing home continent 0.0169 speed bump car park 0.3893

political boundary women’s clothes shop 0.0208 sea island 0.3914

greengrocer aqueduct 0.0310 managed forest significant tree 0.3992

interior decoration shop tomb 0.0504 swimming pool water reservoir 0.4174

water ski facility office furniture shop 0.0517 industrial land use landfill 0.4385

community center stream 0.0579 mountain hut hilltop 0.4897

city suburb antiques furniture shop 0.0717 barracks shooting range 0.5145

vending machine gate 0.0806 church historic ruins 0.5348

fashion shop swimming spot 0.0847 glacier body of water 0.5574

beauty parlor fire station 0.0943 canal dock 0.5943

football pitch corporate office 0.1086 police station prison 0.6107

panoramic viewpoint race track 0.1240 tower lighthouse 0.6168

bed and breakfast school building 0.1393 administrative office town hall 0.6209

shelter agricultural field 0.1488 historic castle city walls 0.6446

ambulance station city 0.1542 restaurant beverages shop 0.6496

arts center bureau de change 0.1612 historic battlefield monument 0.6680

supermarket surveillance camera 0.2042 art shop art gallery 0.7480

post box town 0.2097 bay body of water 0.7623

school toy shop 0.2172 stadium athletics track 0.7643

canoe spot hunting shop 0.2354 tram way subway 0.7643

office building academic bookstore 0.2686 floodplain wetland 0.7686

car store cycling facility 0.2727 basketball court volleyball facility 0.7807

heritage item valley 0.2896 public transport station railway platform 0.8115

city railway station 0.3279 theater cinema 0.8730

picnic site stream 0.3689 motel hotel 0.9037

Table 2: Samples from the GeReSiD benchmark dataset

absolutely equivalent (Chicken Pox & Varicella). Table 4 shows us this benchmark dataset.

For this dataset, we have achieved a correlation coefficient of 0.781. Figure 4 shows how the

results for each sample are distributed. The ssm that we have chosen for being aggregated using our

FLC are Path-based [57] Leacock [42], Adapated Lesk [9], and Resnik [58]. On this occasion, the

FLC behaves very well in detecting cases of absolute and medium similarity, although it incurs in

some false positives in samples that are not similar at all. Intermediate results are presented in the

Appendix C.
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Figure 3: Results achieved over the GeReSiD dataset

Figure 4: Results achieved over the MeSH dataset
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ExpressionA ExpressionB Human

Chicken Pox Varicella 0.968

Antibiotics Antibacterial Agents 0.937

Measles Rubeola 0.906

Pain Ache 0.875

Malnutrition Nutritional Deficiency 0.875

Down Syndrome Trisomy 21 0.875

Breast Feeding Lactation 0.843

Seizures Convulsions 0.843

Carcinoma Neoplasm 0.750

Myocardial Ischemia Myocardial Infarction 0.750

Migraine Headache 0.718

Ur.Tract Infection Pyelonephritis 0.656

Failure to Thrive Malnutrition 0.625

Vaccines Immunity 0.593

Psychology Cognitive Science 0.593

Hepatitis B Hepatitis C 0.562

Pulmonary Stenosis Aortic Stenosis 0.531

Hypertension Failure 0.500

Lactose Intolerance Irr. Bowel Syndrome 0.468

Adenovirus Rotavirus 0.437

Hypothyroidism Hyperthyroidism 0.406

Sarcoidosis Tuberculosis 0.406

Otitis Media Infantile Colic 0.156

Hyperlipidemia Hyperkalemia 0.156

Bacterial Pneumonia Malaria 0.156

Osteoporosis Patent Ductus Arteriosus 0.156

Sequence Antibacterial Agents 0.155

Acq. Immunno. Syndrome Congenital Heart Defects 0.060

Dementia Atopic Dermatitis 0.060

Meningitis Tricuspid Atresia 0.031

Sinusitis Mental Retardation 0.031

Anemia Appendicitis 0.031

Table 3: Samples from the MeSH data set

5.5. Comparison With Existing Works

In principle, it seems reasonable to think that having good interpretability and high accuracy are

contradictory aims, and one could think that reaching high levels of interpretability at the expense

of poor accuracy does not seem to have a practical impact. Once that it is clear that our controllers

use a model that has been specifically designed to produce results that can be interpretable, it is

time to compare the accuracy with the classical solutions to the semantic similarity problem. For this

purpose, we present a comparison of the results obtained using our approach in relation to existing

methods in the literature.
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Algorithm Score p-value

Google distance [16] 0.470 8.8 · 10−3

Huang et al. [33] 0.659 7.5 · 10−5

Jiang & Conrath [37] 0.669 5.3 · 10−5

Resnik [58] 0.780 1.9 · 10−7

Leacock & Chodorow [42] 0.807 4.0 · 10−8

Lin [44] 0.810 3.0 · 10−8

Faruqui & Dyer [22] 0.817 2.0 · 10−8

Mikolov et al. [54] 0.820 2.2 · 10−8

CoTO [49] 0.850 1.0 · 10−8

Our approach 0.855 1.0 · 10−8

Table 4: Results from the different algorithms over the Miller & Charles dataset

The first comparison belongs to the domain of the measurement of semantic similarity in general

purpose settings. The most successful methods so far are calculated by creating a vectorized repre-

sentation of the words (a. k. a. word embeddings) using neural networks over large corpora of text

[33, 22, 54]. Table 4 shows us the results of different approaches when solving the Miller & Charles

dataset. As it can be seen, our approach gets the best results although it is true that the results of

neuronal techniques are very dependent on the textual corpus with which they are trained.

Table 5 shows us the results of different approaches when solving the GeReSiD dataset. Unfor-

tunately, this benchmark dataset is not yet very well known, and therefore there are few works that

include it. In addition, some authors use the Spearman correlation coefficient that identifies very well

what happens inside the benchmark dataset by guessing the relative order, but has little predictive

capacity when requiring absolute values. In order to have a neural approach in the pool of compared

methods, we have implemented a simple version of LSTM to solve the problem. Once again, our

approach is able to overcome the rest of methods.

Table 6 shows the results achieved by the different approaches when solving the MeSH benchmark

dataset. The biomedical domain has a long tradition of research in the field of semantic similarity

measures, mainly due to the large interoperability problems that exist between different teams of

doctors and practitioners from a number of different backgrounds. This means that there are already
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Algorithm Score p-value

Han et al. (UMBC) [25] 0.490 3.0 · 10−4

Deerwester et al. (LSA) [21] 0.540 5.2 · 10−5

Deerwester et al. (LSA2) [21] 0.594 3.5 · 10−7

Han et al. (UMBC-STS) [25] 0.630 4.7 · 10−7

Aouicha et al. [7] 0.640 4.7 · 10−7

O-LSTM (own implementation) 0.675 2.8 · 10−7

Our approach 0.729 1.0 · 10−8

Table 5: Results from the different algorithms over the GeReSiD dataset

Algorithm Score p-value

Adapted Lesk [9] 0.584 9.2 · 10−4

Path-based [57] 0.584 9.2 · 10−4

Li et al. [43] 0.707 7.2 · 10−7

J&C [37] 0.718 4.1 · 10−7

Lin [44] 0.718 4.1 · 10−7

Resnik [58] 0.721 4.0 · 10−7

Meng et al. [53] 0.731 2.1 · 10−7

Seco et al. [61] 0.732 2.1 · 10−7

Sanchez et al. [59] 0.735 1.8 · 10−7

Taieb et al. [63] 0.753 6.0 · 10−8

Our approach 0.774 2.0 · 10−8

Table 6: Results from the different algorithms over the MeSH dataset

some methods in this context that work quite well. However, we can see that our FLC is able to

perform better in this context.

As a result, we can observe that despite our model is built by a set of restrictions aimed at

ensuring interpretability, we have been able to achieve results that are in line with the best methods

available. In addition, it is very important to remark that all the ssm that we have chosen as inputs

for our semantic similarity controllers are classical algorithms that although they do not yield the

best results, are able to operate on manually compiled dictionaries. This makes the whole process

highly interpretable. We could always add other ssm based on the use of ANNs that provide very

good scores as inputs (e.g. Mikolov et al. [54] in Miller & Charles or Aouicha et al. [7] in MeSH).

As a consequence, it could even be possible to improve the results presented in this work. However,

this improvement would be achieved at the expense of interpretability. In contrast, the solution that
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we have presented here has the advantage that it makes it possible to trace the whole process. This

means that everything can be easily understood by a human operator without affecting performance,

as our initial hypothesis suggested.

6. Conclusions and Future Work

In this work, we have presented our research towards the automatic design of semantic similarity

controllers based on fuzzy logics. This research has been guided by the need for a solution capable of

expressing the behavior of a sophisticated similarity aggregation strategy in an understandable way.

To do that, we have benefited from the use of a particular case of fuzzy systems, i.e. FLCs, which

are capable of dealing with imprecise information by encoding expert knowledge directly using fuzzy

rules associated with linguistic terms. During the process, we have made use of genetic algorithms

techniques to automate the identification phase, and in this way, reduce the time and cost to obtain

the final design.

To the best of our knowledge, our solution is the first attempt to face neural approaches in relation

to the challenge of measuring semantic similarity from an interpretability perspective and without

renouncing to achieve reasonable levels of accuracy. In fact, our experimental evaluation shows some

evidence that our approach could be better than methods in the sense that it is able of putting together

a non-linear behaviour with an interpretable description in terms of a fully operational IEC 61131-

7 program. To reach this conclusion, the proposed approach has been validated on three popular

benchmark datasets on semantic similarity measurement with the aim of comparing its performance

in terms of accuracy and interpretability with the methods that are known to perform very well in

this context.

As future work, we propose to further investigate three research lines. Firstly, it could be of great

interest to consider distribution comparison metrics for qualitatively assessing the accuracy of the

existing solutions in this field. For example, by measuring of the amount of overlap between the
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human and the artificially generated results. This could be of particular interest in cases whereby

result shows a notable difference especially with many values equal to zero. Secondly, it could be also

interesting to further investigate strategies to obtain semantic similarity controllers that are optimized

not only to solve Pearson-like problems, but also Spearman-like. In this work, we have focused on

optimizing for the Pearson correlation coefficient in order to be able to predict semantic similarity in

the future. However, there may be cases where Spearman rank correlation could also make sense, since

the user could be interested in ordinal properties of the similarity assessment. Finally, we will work in

the further exploration of multi-objective optimization strategies to simultaneously optimize accuracy

and interpretability. The proposal introduced in this paper has been able to configure the controller

with the minimum number of constraints required to guarantee the best practices on interpretability,

but a multi-objective approach could offer the possibility to choose between a wide range of solutions

from a Pareto front according to the particular needs of different situations.
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