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Abstract. Recently, transfer learning strategies have become ideal for reusing acquired knowledge through a training phase. The
key idea is that reusing such knowledge brings advantages such as increased accuracy and considerable resource savings. In
this work, we design a novel strategy for effective and efficient transfer learning in semantic similarity. Our approach is based
on generating and transferring optimal models obtained through a symbolic regression process being able to stack evaluation
scores from several fundamental techniques. After an exhaustive empirical study, the results lead to high accuracy in addition to
significant savings in terms of training time consumed in most of the scenarios considered.
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1. Introduction

The research community has long recognized that
transferring knowledge acquired through a learning
phase is critical for intelligence. Furthermore, although
there are many forms of learning, such as learning
by analogy, case-based learning, and domain adaption,
it seems clear that appropriately transferring such ac-
cumulated experience, irrespective of the acquisition
method, is an efficient approach to obtaining favorable
results in the real world.

For this reason, it seems reasonable to devote re-
search efforts to designing novel Transfer Learning
(TL) techniques that can benefit from the latest ad-
vances to accumulate and transfer the knowledge gen-
erated [40]. TL is about how computer systems can
reuse the knowledge acquired to face future scenarios
of a similar nature.

*Corresponding author

TL is a crucial area of application and practice
nowadays since knowledge adaption is one of the most
tangible forms of implementing intelligent solutions
[34]. We can see this clearly in our daily lives since
learning from small data explains how systems can
leverage previous experience and knowledge to face
new problems. In this sense, adaption is the fundamen-
tal building block that facilitates more innovative and
thoughtful solutions.

Remark 1. Motivation. TL methods represent one
of the most important concepts related to knowledge
representation. These methods are based on the pos-
sibility of using a given model to export it to other
scenarios of analogous nature. In other words, with
TL methods, the knowledge representation learned to
complete one task can be generalized to help com-
plete other tasks. A suitable knowledge representation
method must determine which factors and features will
be exploited and thus reused in another task.

Remark 2. Research Gap. Most traditional ma-
chine learning approaches can build models capable
of addressing various problems given enough data and
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time. However, the amount of data and time available
are frequently limited. For this reason, TL has received
considerable attention from Deep Learning and Big
Data communities. These communities’ problems are
very resource-intensive in the form of data and time.
This fact explains why strategies of this kind are often
seen as a way to alleviate such issues.

As a result, breakthroughs have been achieved pri-
marily through the use of deep learning [41]. How-
ever, it is assumed that these methods require a large
amount of data, significant processor time, and associ-
ated power consumption. Moreover, interpretability, or
the degree to which a person can understand the output
of the generated models, has received minimal atten-
tion.

In this context, research on TL techniques in sym-
bolic regression could be a promising path to ex-
plore even though it is currently at a very early stage
[32]. Going deeper in this field would be desirable
since knowledge representation presents excellent ad-
vantages regarding the interpretability and simplicity
of the resulting models.

Remark 3. Contributions. Furthermore, the prob-
lem of TL has yet to be studied in specific domains,
such as semantic similarity, despite all the practical im-
plications that some advances could have in many dis-
ciplines, such as information integration, question an-
swering, or machine translation. Therefore, positive re-
sults in this regard can be very relevant. The following
is a condensed version of the most important contribu-
tions that can be drawn from this body of work:

– C1. We introduce a novel technique for transfer
learning of models trained on datasets of similar
nature to the one to be solved. Our approach is
based on symbolic regression and brings several
advantages over traditional techniques of neural
nature, such as improved accuracy, increased in-
terpretability and significant savings in time and
power consumption in the training phase.

– C2. We perform a complete empirical study that
reliably shows the behavior of this approach
concerning the most popular semantic similar-
ity datasets, and we establish a comparison about
when it is convenient or not to transfer the result-
ing models.

The remainder of this paper is structured as follows.
Section 2 provides state-of-the-art about the existing
TL, symbolic regression, and semantic similarity as-
sessment strategies and the solutions proposed to ad-
dress these challenges. Section 3 introduces our scien-

tific contribution. To the best of our knowledge, this
is the first attempt to combine the concepts of TL,
symbolic regression, and semantic similarity. Section 4
shows an extensive empirical study on the implemen-
tation of our strategy when working with the most pop-
ular data sets. Finally, we point out what conclusions
can be drawn from this work.

2. Related Work

Automatically identifying the semantic similarity
between terms, paragraphs, or even documents is
widely acknowledged to be a challenging issue that at-
tempts to address one of the dimensions of the technol-
ogy that will enable machines to perform tedious and
repetitive activities [29]. Because of how relevant it is
to industry and academia, this topic has received much
attention in recent years. The rationale is that com-
puter systems that can accurately evaluate the degree
to which two different pieces of text are similar can
open up a window of opportunity to make an impact
[25].

However, it is widely assumed that one of the essen-
tial practical constraints to advancing systems of this
kind is the lack of enough data for training. In order
to overcome this limitation, substantial research has
been done about TL. The heterogeneous data from the
source and target domains can be converted into a simi-
lar solution space. Next, we will see more details about
the work related to the building blocks needed in our
strategy.

2.1. Semantic Similarity

The possibility of automatically measuring the de-
gree of the semantic similarity between textual pieces
representing the same concept, although they differ in
their lexicography, is a long-standing aspiration of the
scientific community [6]. Methods for semantic sim-
ilarity measurement have had critical applications in
many different domains related to natural language un-
derstanding [4,12,18,19].

New techniques based on neural embeddings have
recently become very popular in this field [30]. How-
ever, these techniques for semantic similarity assess-
ment are only partially suitable for performing TL as
they depend on how the words are vectorized.

For example, if we look at Deep Learning, the most
common strategy is to reuse only a part of the deep
neural network. This part usually consists of the first
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layers since this is where the feature extraction is per-
formed automatically. The last layers can be regener-
ated since they define the more specific details of the
problem. This strategy has proven to be very effec-
tive and efficient to date. However, it is still associated
with some of the issues of neural-based solutions, such
as the need for vast amounts of training data and the
need for interpretability [26]. This is because it is im-
possible to interpret a model that contains hundreds or
thousands of nodes that are related to one another. In
this way, a human operator can specify which outputs
correlate to which inputs, and a deep neural network
will automatically design a somewhat accurate map-
ping function. However, the human operator will not
have any way of knowing what is going on within the
model because the deep neural network will not reveal
this information to them.

For this reason, these models are frequently referred
to as black boxes because they conceal the workings
of their operations from the people who utilize them.
Although a significant quantity of study has been done
in recent years to address this issue [24], the problem
still needs to be solved. For this reason, we propose to
explore a different alternative based on the notion of
symbolic regression.

2.2. Semantic Similarity Aggregation

In the context of this study, we compile and strategi-
cally organize several existing approaches for seman-
tic similarity measurement. Aggregation methods are
standard in many subfields of computing. They are
frequently used in production settings because they
hide the faults caused by individual methods by group-
ing them with other methods that are generally reli-
able [28]. Aggregation approaches lose their useful-
ness only in the improbable event that all methods con-
currently commit the same error.

The arithmetic means, the median, the geometric,
and the harmonic means are the four types of aggre-
gation operators that are used most frequently. How-
ever, their aggregation technique could be more real-
istic [5]. This almost always indicates that the tech-
niques in question do not produce the best results. As a
result, researchers tend to explore more efficient oper-
ators capable of depicting a good interaction between
the present variables.

2.3. Symbolic Regression

We use symbolic regression based on Genetic Pro-
gramming introduced by Koza [17]. GP is a technique

that generates and optimizes programs to solve a par-
ticular task using genetic operators. The tree repre-
sentation is usually used in GP to represent a solu-
tion, making this technique versatile and allowing the
models to be extended since more functions could be
added. Moreover, a human operator can easily under-
stand the behavior of the GP-derived model since so-
lutions consist of a computer program that best solves
a given problem.

Furthermore, even though TL has become highly
prevalent in machine learning, such techniques as evo-
lutionary transfer learning based on GP and their ap-
plications have yet to be deeply explored. Just some
works like O’Neill et al. [33] suggested a TL approach
for GP that considers the similarity between alternative
solutions that have been developed in multiple situa-
tions, or Iqbal et al. [15] used subtrees learned on the
source domain to help GP perform better on similar
target tasks.

Symbolic regression is the term that groups a family
of strategies that can learn directly from data and create
both the structure and variables of regression models
simultaneously [3]. The interpretability of symbolic
regression is one of its significant advantages since the
resulting model is expressed in function form. It gives
domain experts a valuable understanding of the under-
lying data generation process and highlights the main
characteristics [32].

2.4. Transfer Learning

The idea is to use the knowledge gained from work-
ing with the source model in the past to apply it to the
target task [9,39,10]. According to the literature, there
are up to four different types of TL:

– Instance-based methods, whereby the transfer-
ence corresponds to the source instances

– Feature-based methods, whereby the transference
corresponds to the standard features in the source
and target domains

– Model-based methods, whereby the transference
is (part of) the source model

– Relation-based methods, whereby the transfer-
ence is about the relations in the source domain

In this work, we are going to focus on the use
of Model-based methods. Most approaches from this
branch consider that the source and the target domains
have some parameters in common. The rationale be-
hind these approaches is that a model that has been
properly trained should be able to successfully model
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enough domain knowledge that it can be reused in a
different scenario. Thus, it is usually assumed that one
works with domain-invariant models.

Some of the most popular TL approaches in the
field of semantic similarity are BERT [7] and ELMO
[35]. However, they are undertaking a brute force ap-
proach since their successful condition for TL is that
they work with vast amounts of source domain train-
ing data. Unfortunately, the abundance of data is not
the most common actual situation, so exploring other
alternative approaches is necessary. From now on, we
will explain an effective technique for TL based on
symbolic regression.

2.5. Novelty of our Approach

The challenge of TL in symbolic regression has re-
ceived little attention. However, the fundamental idea
that a symbolic expression that has been computed to
optimize fitness in a given problem is hardly reusable
in other problems has been disproved in some works.

TL can generate solutions based on Abstract Syn-
tax Trees (ASTs) that, in many cases, outperform
baseline methods in classical classification and regres-
sion tasks. Because of the symbolic nature of GP ap-
proaches and their versatile representation, GP is an
excellent option for working around the notion of AST
[42]. There have already been several beneficial uses
of GP in this context [27].

GP would find an AST that produces optimal se-
mantic similarity measures by tackling the problem
at a higher abstraction level. Moreover, symbolic re-
gression has recently attracted much attention because
its application brings a high degree of interpretabil-
ity in the form of functional interpretability [32]. Fur-
thermore, interpretability is an inherent characteristic
of symbolic regression and genetic programming [1].
Several studies have demonstrated how symbolic re-
gression can enhance the understanding of the result-
ing models [8,13].

We present our approach to transferring learning
using symbolic regression to raise semantic similar-
ity measures. Our strategy is based on the FullTree
method from [8] that assumes the best tree should be
transferred. We aim to use that model resulting from
the source tasks to enhance the performance of learn-
ing methods in the target tasks.

3. Transfer Learning for Semantic Similarity
Measures using Symbolic Regression

As this is a supervised machine learning problem,
let X be the input space and let Y be the output space.
Our goal is to learn a model m : X → Y to assign a la-
bel from Y to a sample from X . This model is learned
from a learning set S = {(xi, yi) ∈ (X × Y )}ni=1.

In our specific case, we assume that the samples
(xi, yi) ∈ S are drawn from a distribution DS of sup-
port X×Y . Our goal is to learn m such that it commits
the minimum error possible for labeling new items
coming from the distribution DS .

3.1. Transfer Learning

A domain D consists of a feature space X and a
marginal probability distribution P (X), where X =
{x1, ..., xn} ∈ X . Given a specific D = {X , P (X)},
a task consists of two parts, i.e., a label space Y and a
function f : X → Y . The function f is used to predict
the corresponding label f(x) of a new item x. At the
same time, a function T = {Y, f(x)} is learned from
the training consisting of pairs {xi, yi}, where xi ∈ X
and yi ∈ Y .

Furthermore, given a source DS and a task TS , a
target DT and a task TT , whereby DS ̸= DT , or TS ̸=
TT , TL aims to help improve the learning of the target
function fT (·) in TT using the accumulated knowledge
in DS and TS .

3.2. Symbolic Regression

In this work, we address this problem from the GP
point of view. The idea behind GP is to replicate the
principle of natural selection to create specific individ-
uals capable of solving a given problem [2]. In the par-
ticular case of symbolic regression, the evolutionary
strategies are aimed at the automatic design of com-
puter programs, whether they are functions or algo-
rithms.

Most regression models propose that Yi is a function
of Xi and β, with ei representing errors and residuals
that may stand in for unknown determinants of Yi or
random statistical noise:

Yi = f(Xi, β) + ei
The researchers aim to estimate the function f(Xi, β)

that most closely fits the input data. In order to carry
out regression analysis, the form of the function f must
be properly assessed. This kind of strategy can be seen
as a data-driven method mainly because the initial pop-
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ulation of individuals representing solutions evolves
guided towards the goals of maximizing fitness. In ad-
dition, the approach will select the most promising op-
erators and variables since no condition imposes that
all of them must be used.

3.3. The learning process

The learning process is driven by an evolutionary
approach which allows the model to evolve towards
fitness maximization. The aim is to find the best indi-
vidual leading to a solution while avoiding over-fitting,
for which a cross-validation process is maintained to
ensure that the model generalizes well.

Therefore, we have chosen a classical approach for
an elitist evolutionary strategy that considers muta-
tion for an automatic exploration of the solution space
while allowing a mechanism to escape from the opti-
mum local problem).

Although many other learning techniques of both
evolutionary and other nature could be studied to pro-
ceed with the evolution of the models towards an op-
timal AST, this requires considerable attention and is
outside the scope of this work. Nevertheless, it would
remain pending as an interesting line of future re-
search.

3.4. Training, Regularization, and Bloat Control

The semantic similarity measures are combined
with operators and constant numbers searching to build
the objective function. The underlying AST can evolve
thanks to the evolutionary strategy we referred to, as
explained in [17]. The result is calculated by evaluat-
ing each node and performing the parent node opera-
tion on the child nodes.

Traditional methods like cross-validation handle
over-fitting work well with a few inputs, but these tech-
niques usually need an alternative when dealing with a
large set of inputs. This issue is often tackled using a
methodology known as regularization, which reduces
the complexity of models while allowing for potential
adjustments.

Figure 1 shows what the ideal TL process would
look like. By benefiting from a model that is assumed
to be good, we start with a population of high-quality
ASTs from the beginning. Therefore the first value is
much better, and the training process is much faster
than the process without TL. This way, the maximum
value is reached much earlier, thus saving time and as-
sociated variables such as power consumption. These

savings can be especially significant when the problem
is sufficiently complex, as shown in Section 4.4.

Last but not least, bloat is one of the most problem-
atic phenomena in GP. A rise in the average program
size without a matching gain in fitness is the definition
of this phenomenon. In our particular case, it is not
desirable since it could cause our already small AST
to fall into a spiral that would not allow it to evolve.
Therefore, in this work, we use the classical method of
limiting the maximal allowed depth just as described
in [23].

4. Results

The idea is to determine the quality of our mod-
els when trained on a dataset and used to solve other
datasets of similar nature. Therefore, we have divided
this section: first, we describe the datasets we will
work with; second, we explain the evaluation criteria
commonly used in semantic similarity measurement.
Then, we specify the configuration we have used in this
empirical study. Finally, we show the results obtained
and provide an analysis.

4.1. Datasets

We will use the four most popular benchmark
datasets to conduct our experiments. Firstly, we will
use two well-known general-purpose datasets to give
us an idea of how the method works. The first one is
the Miller & Charles [31] that consists of 60 words
from daily life and Rubenstein & Goodenough [38]
that extends the previous. Some samples from these
datasets are: (gem-jewel, 0.98), (car-automobile, 0.98),
(rooster-voyage, 0.04), (chord-smile, 0.02).

In addition, WS353 [11] contains 353 pairs of words
on different human subjects, for example (tiger-cat,
1.0) or (computer-keyboard, 0.75). Unlike many pub-
lished studies, we work here with the full version
of the dataset. Finally, Simlex-665 [14] containing
665 general-purpose entries to evaluate the quality of
new methods for similarity assessment (actress-actor,
0.712), (teacher-instructor, 0.925), etc.

We aim to find a numerical score in the real inter-
val [α, ω] that states the similarity between the differ-
ent entities to be compared. In this way, values close
to α mean that the two entities are not similar, and val-
ues close to ω mean that the two entities are practi-
cally synonymous. This characteristic makes the auto-
matic methods that try to face the problem be evaluated
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Fig. 1. Example of an ideal TL scheme where a higher start allows reaching the maximum training value earlier and brings associated advantages
such as lower time and electric power consumption

through correlation measures between the scores pro-
vided by the human judgment and the scores provided
through the machine.

4.2. Evaluation Criteria

One challenge when determining the likeness be-
tween the two entities being compared, possibly apply-
ing a threshold above which they are considered equiv-
alent later. This problem is usually evaluated based on
the correlation between the the cases solved by the
experts and the values returned by the machine. This
computation is not only helpful in guiding our evolu-
tionary process, but it is also vital for the fitness func-
tion.

The Pearson Correlation Coefficient and the Spear-
man Rank correlation are two methods that may be uti-
lized to analyze the methods that are used to find com-
parable links utilizing the notion of correlation. Pear-
son’s correlation coefficient can measure the degree of
correlation between the human judgment and the re-
sults produced by the machine; more specifically, the
Pearson Correlation Coefficient is calculated between
two numerical arrays: the truth and the solution’s out-
put. The Spearman Rank correlation is the other option
available. When the findings are to be compared on an
ordinal scale, the Spearman Rank correlation test is the
analysis that should be used. The following is how it is
computed:

In our study, we consider both approaches since we
do not strongly prefer one correlation coefficient over

the other. In addition to that, this makes our investiga-
tion more comprehensive.

4.3. Experimental Setup

Determining the optimal configuration of our strat-
egy requires a grid search to find the best parameters
to work with. In practice, this search space is so huge
that we have had to narrow down the intervals. Below
we can see the parameters for the symbolic regression
strategies in addition to the intervals in which we have
delimited our grid search:

– Operator set {+,−, ·,÷, exp,max,min}
– Individual’s length [0 - 50]: 22
– Maximum tree depth [2 - 5]: 4
– Opt. of operator precedence [Yes, No]: No
– Constants [0 - 5]: 3
– Data representation (binary, real): real
– Population size [10 - 100]: 25
– Crossover probability [0.3 - 0.95]: 0.71
– Mutation rate [0.01 - 0.3]: 0.15
– Stop condition [1,000 - 50,000]: 20,000

Just as a small remark, it is necessary to comment
that the division operator is protected against division
by 0, i.e., in the case that the denominator of such op-
eration is a 0, it will be considered that this individual
is not valid so that the execution flow of our strategy
does not collapse.

Regarding the training phase, we have chosen a 5-
cross-fold validation so that in each test we train with
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80% of the sample and test on the remaining 20%.
Moreover, we do this five times to solve the dataset
completely.

Furthermore, we rely on one of the most popu-
lar general-purpose sources to implement the methods
that populate the leaves of the ASTs, i.e., WordNet1

which is a knowledge base that attempts to model syn-
onymic relationships as well as sub summary relation-
ships between different concepts. Several methods for
calculating similarity based on the different paths can
be calculated in such a taxonomy. These methods are
Path (path) [36], Leacock (lch) [20], Wu & Palmer
(wup) [43], Li (li) [21], Resnik (res) [37], Lin (lin)
[22], Jiang & Conrad (jcn) [16], and wpath [44]). Our
concept here is to aggregate all these methods strate-
gically so that a) we can reach higher levels of accu-
racy b) any person could take a look at WordNet and
the way the distance between the different concepts is
calculated to realize where the final semantic similar-
ity value comes from. To meet both objectives simulta-
neously, we will need small ASTs. This is mainly be-
cause simple models behave better in terms of gener-
alization of solutions than complex ones.

4.4. Empirical results

This section will detail the results obtained in our
empirical evaluation using the most popular bench-
mark datasets. The results reported for our approach
are based on 30 independent executions due to the non-
deterministic nature of the methods. So we report the
average value achieved (the average result obtained af-
ter 30 independent runs). Please note that although our
methods are prepared to iterate up to 20,000 times, we
will only plot up to 2,000 iterations. The reason is that
the most interesting part of the methods happens in this
interval. We often look for successful mutations to cir-
cumvent the optimum local problem, but the informa-
tion obtained is usually plain and not that interesting
in most situations.

4.4.1. Transfer from MC30 to the others
Our first experiments transfer the AST obtained by

training MC30 to the rest of the semantic similarity
datasets. Figure 2 shows the obtained results. As it can
be seen, the valuable fact of starting the process with
a higher accuracy value due to the use of a model that
already worked well in a scenario of a similar nature is
more or less fulfilled. This allows the highest value to

1https://wordnet.princeton.edu/

be reached much earlier, leading to considerable sav-
ings in learning time (and associated advantages such
as power consumption).

As a general rule, and in line with our initial hypoth-
esis, it can be observed that models with TL can reach
the maximum accuracy value much faster than those
that must start from scratch. In some cases, transfer-
ring the best AST does not achieve much better results
than a cold start (e.g., Pearson correlation in the MC30
transfer to WS353), but even in such cases, transferring
the knowledge does not have a negative effect.

4.4.2. Transfer from RG65 to the others
The second of our experiments consists of transfer-

ring the AST obtained by training RG65 to the rest of
the problems. Figure 3 shows the different results. This
time, we have used the models obtained by training
with RG65 to solve the rest of the benchmark datasets.
As can be seen, this has the associated advantage of
starting with higher initial values and a higher speed of
convergence to the maximum as expected.

Transferring the best solution has significant advan-
tages in the form of time savings. Indeed, there are
cases when such transference does not give the ex-
pected results, but even in such a case, the results do
not differ from a cold start with random numbers in the
long run.

4.4.3. Transfer from WS353 to the others
The third of our experiments is transferring the best

AST obtained by training WS353 to the rest of the
problems. Figure 4 shows the different results that
we have achieved. Please note that in the first two
cases, knowledge is being transferred to much smaller
datasets, while in the third case, it is being transferred
to a much larger task. This does not prevent the good
behavior of the initial solutions transferred.

It can be observed that as one tries to transfer knowl-
edge that has been learned using massive datasets,
the effectiveness of such transfer decreases. It seems
that, in our particular case, the generalization obtained
through a model learned for a large data volume does
not apply to the specific set of small data.

4.4.4. Transfer from Simlex665 to the others
Our last experiments consist of transferring the AST

obtained by training Simlex665 to the rest of the prob-
lems. Figure 5 shows the different results that we have
achieved for this last experiment. In this case, being
Simlex665 the largest benchmark dataset in our study,
ASTs learned in a larger task are being transferred to
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Fig. 4. Summary of results obtained when the model to be trans-
ferred has been generated in the WS353 training phase
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Fig. 5. Summary of results obtained when the model to be trans-
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MC30 RG65 WS353 Simlex665
Method σ ρ σ ρ σ ρ σ ρ

path 0.755 0.745 0.784 0.783 0.340 0.314 0.502 0.584
lch 0.787 0.744 0.841 0.783 0.349 0.314 0.599 0.584
wup 0.759 0.747 0.777 0.758 0.361 0.348 0.601 0.542
li 0.802 0.734 0.857 0.787 0.340 0.337 0.593 0.586
res 0.807 0.734 0.833 0.749 0.385 0.347 0.549 0.535
lin 0.829 0.766 0.855 0.762 0.374 0.310 0.549 0.582
jcn 0.665 0.833 0.719 0.770 0.302 0.292 0.539 0.579
wpath 0.836 0.747 0.873 0.788 0.349 0.349 0.614 0.603
TL1 - - 0.866 0.813 0.413 0.354 0.611 0.599
TL2 0.867 0.821 - - 0.391 0.345 0.618 0.601
TL3 0.835 0.801 0.784 0.789 - - 0.601 0.619
TL4 0.847 0.804 0.874 0.789 0.380 0.332 - -

Table 1
Results (test) obtained for all the benchmark datasets. Transfer
Learning solutions obtain better results in most cases

solve much smaller tasks. This leads to lower results
than those obtained in the previous experiment.

With all the experiments performed, we have cov-
ered all possible transfer cases from small to large
problems and vice versa. TL techniques benefit less
training time in most cases and do not hurt in the re-
maining cases. So their use may make sense in a wide
range of situations. However, we will now proceed to
a detailed study of this phenomenon.

Table 1 shows the maximum results achieved with
the semantic similarity measures and all benchmark
datasets considered in this work. As is evident, and
as we have seen in Table 1, the results our resulting
models will always be superior since we can aggregate
them.

Please note that while it is true that we could use
much more advanced and recent semantic similarity
measures, such as those based on word embeddings
[30] or transformers [7], we do not wish to do so since
it would be detrimental to the interpretability. There-
fore, our selection only comprises widely accepted
measures as reasonably interpretable. Moreover, this
work does not claim to obtain the best results in se-
mantic similarity assessment but a sound strategy to
save time in different training processes.

4.5. Discussion

Assessing semantic similarity across textual pieces
is commonly an issue impacting various computer-
related disciplines. Research in this direction has
served as the foundation for many computer-related
disciplines such as data integration, information re-
trieval or query expansion. Nevertheless, there may be
times when the best idea is not to develop a strategy
from scratch but to design a system that makes it possi-
ble to aggregate the different methods already in place

effectively. For example, many similar experiences al-
ready exist in word embeddings, where recent research
can demonstrate that the linear combination of existing
methods can surpass the state-of-the-art [19].

The challenge of training solutions with small data
sets is a severe problem many industries face today.
TL can be an excellent solution to this challenge since
it uses resources efficiently by reusing data and exist-
ing models. Therefore, our novel approach can result
in benefits such as solutions with high accuracy, inter-
pretability, and performance rates. Also, the resulting
model is immediately exportable in the form of a func-
tion to many programming languages, which facilitates
its understanding by a human operator. As a result, we
have a strategy that positively impacts a wide range of
industry sectors.

Furthermore, we could deduce that our proposal can
perform well in most experiments from the results ob-
tained. It is also clear that determining when there may
be an opportunity for a positive transfer is far from
trivial, and there is no systematic way to find out yet.
We have seen how systems can expand their applica-
tion range outside their initial conception by transfer-
ring information from one domain. This generalization
makes it more available and robust in many situations
where expertise or resources, such as computational
power, data, and hardware, are limited. Therefore, us-
ing TL in this context has the following advantages:

– Improved baseline accuracy since it is possible to
boost the baseline precision of a given method by
supplementing its basic information with knowl-
edge from a source model that was used to solve
a similar problem.

– Interpretability of the resulting model that moves
away from black box solutions to build a fully
functional model that can be understood by the
human operators who will make use of it.

– Time to develop a model: Using information from
a source model aids in thoroughly learning the
target task instead of building it from scratch.
This usually improves the models’ training time,
especially in cases requiring vast computational
resources to complete the training phase.

Moreover, our strategy can bring the advantages of
TL in most cases, and even in situations where it is
not possible, its application does not penalize cold start
results, so it makes sense to consider strategies of this
type.
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5. Conclusions

We have presented our approach to TL using sym-
bolic regression to solve the challenge of automat-
ically measuring semantic similarity. Our approach
uses functional models that are effective and efficient
when reused in problems of analogical nature. Our ap-
proach has several advantages over classical neural so-
lutions, including less training time required to reach
the maximum value, resulting in additional benefits
such as reduced power consumption, which is rele-
vant when dealing with substantial volume problems.
In addition, the resulting models are more interpretable
since they are expressed in a functional form. This
means that the model can be understood by anyone
who can read a mathematical expression and easily re-
calibrated with a mathematical sub-expression that al-
lows it to adapt to the new situation at a meager cost.

One of the lessons to be learned from this work
is that although most of the methods in the seman-
tic similarity field have historically been built to work
in isolation, the knowledge generated when training
them can be successfully reused. Even if these meth-
ods might be programmed to solve particular prob-
lems, they can profit from the resulting models more
efficiently when applied in different scenarios through
model-based TL techniques. Therefore, we have seen
that TL is an appropriate strategy for overcoming the
view of the isolated learning model, which has tradi-
tionally prevailed.
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