
SIFT: An Algorithm for Extracting Structural Information
From Taxonomies
Jorge Martinez-Gil,

Software Competence Center Hagenberg (Austria), jorgemar@acm.org

Keywords: Algorithms; Knowledge Engineering; Knowledge Integration; Taxonomy Analysis

Abstract

In this work we present SIFT, a 3-step algorithm for the analysis of the structural information repre-

sented by means of a taxonomy. The major advantage of this algorithm is the capability to leverage the

information inherent to the hierarchical structures of taxonomies to infer correspondences which can

allow to merge them in a later step. This method is particular relevant in scenarios where taxonomy

alignment techniques exploiting textual information from taxonomy nodes cannot operate success-

fully.

1 Introduction

The problem of aligning taxonomies is one of the most interesting and relevant issues for knowledge

engineers, since it has implications in a wide range of computational problems including file system

merging, creation of operating systems distributions, catalog integration, distributed taxonomy search,

and so on. The non-deterministic nature of the problem is given by the fact that not even humans

are able to identify optimal alignments [6], so the process is highly subjective. This means that its

boundaries often go further than the category of an engineering problem what makes difficult to find

closed solutions in this area. However, the large amount of people, research groups and resources

dedicated to provide solutions in this field, tells us that we are facing a key challenge in order for a

convincing way to automatically integrate taxonomic knowledge to become real.

In the last years, the need for methods to integrate knowledge has increased. Note that the need

for aligning taxonomies comes from the old field of database schema integration. This field was

born to work in a unified way with databases which had been developed independently. Nowadays

researchers aim to make the techniques for aligning knowledge models flexible and powerful enough

1

to work with all kind of database schemas, XML schemas, taxonomies, E/R models, dictionaries, and

so on. Therefore, the problem we are facing consists of providing a set of correspondences between

the nodes of two taxonomies about the same domain but which have been developed separately [20].

The major contribution of this work is the proposal of a 3-step algorithm that is able to analyze

the structural information represented by means of a taxonomy. The major advantage of this analysis

is that it can allow us to leverage the information inherent to the hierarchical structure of taxonomies

to infer correspondences which can allow to automatically merging them in a later step. This is

particular relevant in scenarios where taxonomy matching techniques exploiting textual information

from the taxonomy nodes cannot operate successfully.

From now on, this work is structured in the following way: The second section describes the

state-of-the-art on taxonomy alignment. The third section describes the design and development of

the algorithm. Case studies section provides some scenarios where our algorithm can help to solve

real problems, including a brief discussion on the strengths and weaknesses of the proposal. Finally,

we outline the key points of our contribution and propose future research tasks.

2 Related Work

The problem of aligning taxonomies have received much attention by the research community since

various knowledge based applications, including clustering algorithms, browsing support interfaces,

and recommendation systems, perform more effectively when they are supported with domain de-

scribing taxonomies, which help to resolve ambiguities and provide context [3]. Furthermore, this

problem is of great interest on a number of application areas, especially in scientific [6], business [1]

[16], and web data integration [4] [17].

Taxonomy alignment techniques are able to detect taxonomy concepts that are equivalent. But,

when can we say that two concepts are equivalent? If we attend only to the text label for representing

the concepts, we can find many examples in everyday life, for instance, lift and elevator or car and

automobile seem to be equivalent concepts since they represent the same real idea or object. However,

it is well known that when taxonomies are used as knowledge sources, the way users perceive the

degree of likeness between pairs of concepts is highly dependent on the domain being explored [3].

Therefore, synonymy between text labels is not always an equivalence indicator, so it is necessary to

2

focus in the context the concepts are being considered.

Existing taxonomy alignment techniques focus on different dimensions of the problem, including

whether data instances are used for matching [9], whether linguistic information and other auxiliary

information are available [12], and whether the match is performed for complex structures [15]. Our

algorithm fits in this last category.

Algorithms implementing techniques for matching complex structures are mostly based on heuris-

tics. Heuristics consider, for example, that elements of two distinct taxonomies are similar if their

direct sub-concepts, and/or their direct super-concepts and/or their brother concepts are similar [19].

These structural techniques can be based on a fixed point like that proposed in [8], or can be viewed as

a satisfiability problem of a set of propositional formulas [2]. There are also some proposals to align

taxonomies supposed to be asymmetric from a structural point of view [5], or to create matching func-

tions by means of a composition of various techniques designed to make best use of the characteristics

of the taxonomies [19].

Despite such advances in matching technologies, taxonomy alignments using linguistic informa-

tion and other auxiliary information are rarely perfect [13, 11, 10]. In particular, imperfection can

be due to homonyms (i.e., nodes with identical concept-names, but possibly different semantics) and

synonyms (concepts with different names but same semantics). However, the major advantage of pure

structural matching techniques is that finding perfect alignments is possible in many cases.

3 Contribution

We approach the problem from the classic perspective, that it is to say, a taxonomy can be defined as a

set of concepts that have been hierarchically organized to control the terms belonging to a vocabulary.

The goal is to facilitate a number of operations on items from a repository. However, a problem occurs

when two item repositories have to be merged, since it is also necessary to merge the two taxonomies

which describe them.

Our contribution to face this problem is the proposal of an efficient 3-step algorithm for the analy-

sis of taxonomies describing such repositories. This analysis could be helpful for solving the problem

of heterogeneity between the given taxonomies from a strictly structural point of view in a later step.

As a collateral effect, the output data from our algorithm could be also used for exploiting any kind

3

of solution involving the use of information from the structure of the given taxonomies. Use cases

section will explore this in more detail.

More formally, we can define a mapping as an expression that can be written in the form (c, c’, n,

R). Where c and c’ are concepts belonging to different taxonomies, R is the relation of correspondence

and n is a real number between 0 and 1. n represents the degree of confidence for R. In our work, c and

c’ will be concepts represented by means of taxonomy nodes (a.k.a. taxons) which are assigned a rank

and can be placed at a particular level in a systematic hierarchy reflecting relationships. Moreover, the

relation R which describe how c and c’ are related is going to be of similarity.

The algorithm that we propose is divided into three high level steps. The first step is optional since

it is only necessary when the given knowledge model is not a taxonomy yet, but another kind of more

general model like an graph or an ontology [21].

1. To convert the knowledge model into a taxonomy (See Algorithm 1).

2. To store the taxonomy in some parts of a special data structure (See Algorithm 2).

3. To order and fill the data structure with complementary calculations (See Algorithm 3).

Finally, it is necessary to call the algorithm (See Algorithm 4). The philosophy of the algorithm

consists of detecting the changes in the depths of each taxon in the hierarchy. In this way, it is possible

to count the different kinds of neighbors that a concept may have.

Before designing the algorithm, it is also necessary to define a data structure (DS) to store the

data calculated by the algorithm. The data structure is a linked list with six records in each node:

depth, children, brothers, brothers left, same level and name. Table 1 tells us the data type and a brief

description of each of these records. In the next subsections, we are going to describe more in depth

each of the main steps of the proposed algorithm.

3.1 Converting a knowledge model into a taxonomy

This is the first step which consists of converting the model into a taxonomy which will allow us to

compute more easily the data related to the neighborhood of each concept into the knowledge model.

This step is optional and it is only necessary when the input is not a perfect hierarchy but contains

some cycles. This is the usual case when working with graph models or ontologies, for example. The

4

Attribute Type Description

depth integer Level of the current taxon (begins with 0)

children integer Number of children of the current taxon

brothers integer Number of brothers of the current taxon

brothersLeft integer Number of brother taxons that are above this

sameLevel integer Number of taxons with the same depth

name string ID of the taxon

Table 1: A node of the linked list which stores the information

procedure is inspired by one proposed in [14] to visit all the concepts in an ontology. Algorithm 1

shows the related portion of pseudocode.

Algorithm 1 ont2tax: Procedure for converting a generic knowledge model into a taxonomy
Require: cls: class, occurs: list, depth: integer

1: storingInTax(cls, depth); Step 2
2: if (cls.canAs(model.class) AND (NOT occurs.contains(cls))) then
3: while iterator = cls.SubClasses do
4: class sub := (class) iterator.next
5: occurs.add(cls)
6: ont2tax (sub, occurs, depth + 1)
7: occurs.remove(cls)
8: end while
9: end if

10: return true

3.2 Storing the taxonomy in the data structure

In this second step, we only know the depth (number of indents for the taxon) and the name of each

concept, so we can only partially fill the data structure, thus, we can only invoke the procedure with

the arguments depth and concept name.

Algorithm 2 storingInTax: Storing the taxonomy in the data structure
Require: cls: ontology, depth: integer

1: Element e := new Element (depth, 0, 0, 0, 0, cls.getName)
2: DS.add (e)
3: return true

5

3.3 Ordering and filling the data structure

With data stored in the DS, we can now detect the changes in the depth of the entries in the taxonomy

to compute the number of children, brothers and, so on. It is necessary to take into account the

following rules:

1. All taxons with the same depth are same level taxons.

2. A chain of brothers is a chain of taxons at the same level.

3. A change to an outer taxon breaks a chain of brothers.

4. All brothers with a previous position are on the left.

5. Given a taxon, if the following concept has an inner depth, it is a child.

6. A chain of children can only be broken by a change to an outer taxon.

7. An inner taxon (grandson taxon) does not break a chain of children.

Algorithm 3 shows us the procedural implementation for this set of rules. The computational

complexity of this procedure is low, even in the worst of cases we would have O(n2), since the

most complex portion of code can be implemented by means of two simple loops. This means that

our solution presents a great scalability regardless of the platform on which the algorithm could be

implemented and executed.

3.4 Calling to the algorithm

Now, it is necessary to invoke the algorithm. At this point it is necessary to define the taxonomy

model and to locate the concepts without ancestors, in order to begin to visit all the concepts. This is

particular relevant in forest models1. Note that the ArrayList is necessary to store the visited concepts.

Algorithm 4 shows the related portion of pseudocode.
1Forest model is that kind of graph model where there is no connection between some graph components

6

Algorithm 3 finalStep: Ordering and filling the data structure
Require: children, brothers, brothers left: integer
Require: same level, i, j, k, t: integer
Require: ag: boolean

1: for i := 0 to DS.size do
2: children, brothers, brothers left := 0
3: for j := 0 to DS.size do
4: if if (j < i) then
5: if if (DS[i].depth = DS[j].depth) then
6: brothers++
7: brothers left++
8: end if
9: if (DS[i].depth < DS[j].depth) then

10: brothers := 0
11: brothers left := 0
12: end if
13: end if
14: if (j > i) then
15: if (DS[i].depth = DS[j].depth) then
16: brothers++
17: end if
18: if (DS[i].depth < DS[j].depth) then
19: break
20: end if
21: end if
22: if ((j = i+1) AND (DS[i].depth = DS[j].depth - 1) AND (NOT ag)) then
23: for for k := j to DS[j].depth < DS[k].depth do
24: if (DS[j].depth = DS[k].depth) then
25: child++
26: ag := true
27: end if
28: end for
29: end if
30: end for
31: for for t := 0 to DS.size do
32: if if (NOT t=i) AND (DS[i].depth = DS[t].depth) then
33: same level++
34: end if
35: end for
36: DS[i].addNumChildren (children)
37: DS[i].addNumBrothers (brothers)
38: DS[i].addNumBrothersOnTheLeft (brother left)
39: DS[i].addNumSameLevel (same level)
40: end for
41: return true

7

Algorithm 4 calling to the 3-step algorithm
1: Model m := createModel
2: Iterator i := m.listHierarchyRootClasses()
3: while i.hasNext() do
4: onto2tax((Class) i.next(), new ArrayList(), 0)
5: end while
6: finalStep ()

4 Case studies

The purpose of this section is to show the relative ease with which a taxonomy analysis can be per-

formed or a new taxonomy matcher can be developed, based on the data obtained from the algorithm.

In the next subsections we are going to show three use cases: how to use the algorithm to compute

the leaves in a taxonomy, how to use it to obtain the structural index of a taxonomy, and finally how

to use it to align taxonomies automatically.

4.1 Computing the number of leaves in a taxonomy

There are techniques that compute the leaves in a graph for performing a graph analysis. In this sense,

our algorithm is easy to extend in order to compute the number of leaves in a taxonomy. To do so, it

is only necessary to compute the number of the deepest taxons. We are going to see how to compute

the leaves of the taxonomy for an example but, it is possible to compute other features such as paths.

Algorithm 5 shows us how to compute the leaves (i.e. terminal nodes) of a given taxonomy.

Algorithm 5 leaves: computing the leaves of a taxonomy
Require: var max, leaves: integer

1: max := leaves := 0
2: for i := 0 to DS.size do
3: if (DS[i].depth > max) then
4: max := DS[i].depth
5: end if
6: end for
7: for for j := 0 to DS.size do
8: if (DS[j].depth = max) then
9: leaves++

10: end if
11: end for
12: return leaves

8

4.2 Comparing structural similarities

It is possible to use our algorithm for extracting structural indexes of taxonomies in order to compare

its structural similarity. The structural index of a taxonomy is a kind of hash function that tells global

information about the total number of children, brothers and so on.

As we show in the state-of-the-art, some techniques use statistical methods for obtaining the struc-

tural similarity. It can be useful for adjusting the quality of the generated mappings, for example.

Algorithm 6 shows how to automatically compute one possible structural index from a taxonomy.

Algorithm 6 structuralIndex: extract a structural index of the ontology
Require: var acum : integer

1: acum := 0
2: for i := 0 to DS.size do
3: acum := acum + DS[i].depth
4: acum := acum + DS[i].children
5: acum := acum + DS[i].brothers
6: acum := acum + DS[i].leftbrothers
7: acum := acum + DS[i].samelevel
8: end for
9: return acum

Obviously, when comparing two structural indexes, the higher percentage, the higher the structural

similarity of the compared taxonomies. This means that if two taxonomies share the same structural

index, we can state that its structural organization is equivalent.

4.3 Real alignment situations

Our algorithm also allows that information to be obtained from the analysis phase can be helpful in

order to take decisions in taxonomy alignment scenarios. Output data from SIFT allow us to easily

create customized rule-based matchers to obtain more accurate taxonomy alignments. For example,

the similarity between two taxonomy concepts or taxons could be given by certain rules concerning

ancestors, brothers, and so on.

Moreover, it is possible to combine our proposal with other basic matching algorithms. This can

be done by designing a formula that may allow us to align taxonomies from the point of view of

the elements, and from the taxonomy structure. This is possible due to the fact one of the attributes

(name) contains information at the element level, so it is possible to exploit this kind of information by

9

using some kind of computational method like the Levenshtein algorithm [7] which is able to calculate

similarity between two text strings. In this way, if many attributes (whether structural or textual) are

similar, the concepts are also supposed to be similar.

5 Conclusions & Future Work

In this work, we have designed and implemented, SIFT that is a 3-step algorithm that allows us to

analyze the structural information inherent to the hierarchical structures of taxonomies. This can be

useful when solving problems concerning heterogeneity between taxonomies describing a same do-

main but which have been developed separately. Therefore, the algorithm that we propose is valid for

taxonomy alignment, but also for aligning ontologies, directory listings, file systems, operating sys-

tem distributions, and in general whatever kind of model which can be transformed into a taxonomy.

Our algorithm tries to leverage the inherent characteristics from taxonomies to infer correspondences

which can allow us to merge them in a later step, even without text labels describing each of the nodes

from the taxonomy.

As future work, we should work to leverage the good performance of our algorithm by designing a

combined alignment strategy. In this work, we have proposed to use each of the attributes with similar

weights. However, this strategy could not be optimal in some specific cases. We aim to redefine this

strategy so that a preliminary study should try to automatically determine the kind of problem we

are facing at a given moment, and dynamically assign higher weights to the most promising taxon

attributes.

References

[1] S. S. Aanen, L. J. Nederstigt, D. Vandic, and F. Frasincar. Schema - an algorithm for automated

product taxonomy mapping in e-commerce. In ESWC, pages 300–314, 2012.

[2] P. Avesani, F. Giunchiglia, and M. Yatskevich. A large scale taxonomy mapping evaluation. In

International Semantic Web Conference, pages 67–81, 2005.

[3] K. S. Candan, M. Cataldi, M. L. Sapino, and C. Schifanella. Structure- and extension-informed

taxonomy alignment. In ODBIS, pages 1–8, 2008.

10

[4] J. Gracia and E. Mena. Semantic heterogeneity issues on the web. IEEE Internet Computing,

16(5):60–67, 2012.

[5] F. Hamdi, B. Safar, N. B. Niraula, and C. Reynaud. Taxomap alignment and refinement modules:

results for oaei 2010. In OM, 2010.

[6] J. J. Jung. Taxonomy alignment for interoperability between heterogeneous digital libraries. In

ICADL, pages 274–282, 2006.

[7] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals. Soviet

Physics Doklady, 10:707–710, February 1966.

[8] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema matching with cupid. In VLDB,

pages 49–58, 2001.

[9] J. Martinez-Gil. An overview of knowledge management techniques for e-recruitment. J. Inf.

Knowl. Manag., 13(2), 2014.

[10] J. Martinez-Gil and J. F. Aldana-Montes. Evaluation of two heuristic approaches to solve the

ontology meta-matching problem. Knowl. Inf. Syst., 26(2):225–247, 2011.

[11] J. Martinez-Gil and J. F. Aldana-Montes. Knoe: A web mining tool to validate previously

discovered semantic correspondences. J. Comput. Sci. Technol., 27(6):1222–1232, 2012.

[12] J. Martinez-Gil and J. F. Aldana-Montes. Semantic similarity measurement using historical

google search patterns. Information Systems Frontiers, 15(3):399–410, 2013.

[13] J. Martinez-Gil, I. Navas-Delgado, and J. F. Aldana-Montes. Maf: An ontology matching frame-

work. J. Univers. Comput. Sci., 18(2):194–217, 2012.

[14] B. McBride. Jena: A semantic web toolkit. IEEE Internet Computing, 6(6):55–59, 2002.

[15] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph matching

algorithm and its application to schema matching. In ICDE, pages 117–128, 2002.

[16] A. Nandi and P. A. Bernstein. Hamster: Using search clicklogs for schema and taxonomy

matching. PVLDB, 2(1):181–192, 2009.

11

[17] S. P. Ponzetto and R. Navigli. Large-scale taxonomy mapping for restructuring and integrating

wikipedia. In IJCAI, pages 2083–2088, 2009.

[18] C. Reynaud and B. Safar. When usual structural alignment techniques don’t apply. In Ontology

Matching, 2006.

[19] P. Shvaiko and J. Euzenat. Ontology matching: State of the art and future challenges. IEEE

Trans. Knowl. Data Eng., 25(1):158–176, 2013.

[20] S. Sun, D. Liu, and G. Li. The application of a hierarchical tree method to ontology knowl-

edge engineering. International Journal of Software Engineering and Knowledge Engineering,

22(4):571, 2012.

12

