
Obtaining Optimum Ontology Matching
Functions by Using Heuristic Approaches
Jorge Martinez-Gil
University of Málaga, Department of Languages and Computing Sciences
Boulevard Louis Pasteur s/n 29071 Málaga (Spain)
E-mail: jorgemar@lcc.uma.es

Abstract. Nowadays there are a lot of techniques and tools for addressing the ontology matching problem, however, the complex
nature of this problem causes existing solutions to be unsatisfactory. This work intends to shed some light on a more flexible
way of matching ontologies: ontology meta-matching. In this sense, we think that an exhaustive study of the problem and a
examination of the existing leading-edge solutions will help developers build more accurate and dynamic systems for selecting
the appropiate algorithms, weights and thresholds in each ontology alignment scenario.

Keywords: meta-matching, ontologies, semantic web

1. Introduction

The Semantic Web is a promising paradigm for the Web in which the semantics of information is
defined, making it possible for the Web to understand and satisfy all of the requests from people and
machines to use the web resources. Therefore, most of the authors consider it as a vision of the Web as an
universal medium for data, information, and knowledge exchange (1).

In relation to knowledge, it is very important the notion of ontology as a form of representation about
a particular universe of discourse or some part of it. Ontology matching is a key aspect in order to the
knowledge exchange in this extension of the Web may be real; it allows organizations to model their own
knowledge without having to stick to a specific standard. In fact, there are two good reasons why most
organizations are not interested in working with a standard for modelling their own knowledge: (a) it is
very difficult or expensive for many organizations to reach a agreement about a common standard, and (b)
these standards do not often fit to the specific needs of the all participants in the standarization process.

Therefore, the old problem of matching schemas has evolved into an analog problem, although it is a
little more complex, because now we handle knowledge. The task of finding correspondences between
ontologies is called ontology matching and the output of this task is called ontology alignment (2). In fact,
obtaining satisfactory ontology alignments is a key aspect for such fields as:

– Semantic integration (3). It is the process of combining metadata residing at different sources and
providing the user with a unified view of these data. This kind of integration should be done auto-
matically, because manual integration is not viable, at least, for large volumes of information (4).

– Ontology mapping (5). It is used for querying different ontologies. An ontology mapping is a function
between ontologies. The original ontologies are not changed, but the additional mapping axioms
describe how to express concepts, relations, or instances in terms of the second ontology. They are
stored separately from the ontologies themselves. A typical use case for mapping is a query in one
ontology representation, which is then rewritten and handed on to another ontology. The answers
are then mapped back again. Whereas alignment merely identifies the relation between ontologies,
mappings focus on the representation and the execution of the relations for a certain task.

– The Web Services industry, where there is tendency to discover and compose Semantic Web Services
(SWS) (6) in a completely unsupervised manner. Originally SWS alignment was based on exact string

2 Martinez-Gil / University of Málaga

matching of parameters, but nowadays researchers deal with issues of heterogeneous and constrained
matching1.

– Similarity-based retrieval (7). Semantic similarity measures play an important role in information
retrieval by providing means to improve recall and precision. They are used in various application
domains ranging from product comparison to job recruitment.

On the other hand, although automatic matching is perhaps the most appropriate way to align ontolo-
gies, it has the disadvantage that "finding good similarity functions is, data-, context-, and sometimes even
user-dependent, and needs to be reconsidered every time new data or a new task is inspected" (8). More-
over, when dealing with natural language often it leads a significant error rate, so researchers try to find
customized similarity functions (CSF) in order to obtain the best alignment for each situation.

On the other hand, functions for calculating alignments can be divided into similarity measures and
distance measures.

– A similarity measure is a function that associates a numeric value with a pair of objects, with the idea
that a higher value indicates greater similarity.

– A distance measure is a function that associates a non-negative numeric value with a pair of objects,
with the idea that a short distance means greater similarity. Distance measures usually satisfy the
mathematical axioms of a metric.

Mathematical laws used to describe behaviour in one domain are not always appropriate in others
domains, and there are long-standing psychological objections to the axioms used to define a distance
metric. For example, a metric will always give the same distance from a to b as from b to a, but in
practice we are more likely to say that a child resembles their parent than to say that a parent resembles
their child. Similarity measures, however, give us an idea about the probability of compared objects being
the same, but without falling into the psychological objections of a metric. So from our point of view,
working with similarity measures is more appropiate for detecting correspondences between different
ontologies belonging to a same domain. In this sense, Ontology Meta-Matching could be considered as a
technique that automatically selects the appropiate similarity measures and its associated weights in case
that similarity measures need to be composed. The main contributions of this work are:

– An introduction to the problem of Ontology Meta-Matching.
– An original structural similarity measure for align ontologies (SIFO).
– An original linguistic similarity measure which use search engines on the Internet to align ontologies.
– An original statistical similarity measure which use textual analysis for aligning ontologies.
– An original greedy algorithm for solving the Meta-Matching problem automatically and efficiently

(MaSiMe).
– An original genetic algorithm for optimizing the solutions to that problem (GOAL).
– An empirical evaluation of the proposed algorithms and a discussion about their convenience.
– An exhaustive study of the future research lines related to this field.

The remainder of this article is organized as follows. Section 2 describes the problem statement related
to the Ontology Meta-Matching problem. Section 3 describes the preliminary definitions and properties
that are neccesary for our proposal. Section 4 describes the development of an algorithm for computing
a structural similarity measure. Section 5 describes a linguistic similarity measure which uses Internet as
source of background knowledge. Section 6 discusses the implementation of a statistical method to align
ontologies. Section discusses a greedy strategy and a way to effectively compute it. Section 7 describes
a genetic strategy and a way to effectively compute it. Section 8 shows the empirical data that we have
obtained from some experiments, including results obtained from a standard benchmark for ontology
matching. Section 9 includes the related work section which compares our work with other approaches.
And finally, in Section 10 the conclusions are discussed and the future research lines presented.

1http://insel.flp.cs.tu-berlin.de/wsc06/

Martinez-Gil / University of Málaga 3

Fig. 1. Example of an user-dependent alignment

2. Problem Statement

The process of aligning ontologies can be expressed as a function f where given a pair of ontologies o
and o′, an input alignment A, a set of parameters p and a set of resources r, returns an alignment A′:

A′ = f(o, o′, A, p, r)

Where A′ is a set of mappings. A mapping2 is an expression that can be written in the form
(id, e, e′, n,R). Where id is an unique identifier for the mapping, e and e′ are entities belonging to d-
ifferent ontologies, R is the relation of correspondence and n is a real number between 0 and 1, which
represents the mathematical probability that R may be true (9). The entities than can be related are the
concepts, roles, rules and, even axioms of the ontologies.

However, experience tells us that finding f is far from being trivial. As we commented earlier, the
heterogeneity and ambiguity of data description makes unavoidable that optimal mappings for many pairs
of entities will be considered as "best mappings" by none of the existing ontology matching algorithms
which are usually called matchers. For this reason, it is neccesary to compose these matchers. Figure 1
shows an example of an user-dependent alignment between ontologies, because this alignment is not valid
for all the countries in the world.

Composite matchers are an aggregation of simple matching algorithms. They exploit a wide range
of information, such as ontology characteristics (i.e. metadata, such as element names, data types, and
structural properties), characteristics of data instances, as well as background knowledge from dictionaries
and thesauri.

1. String normalization. This consists of methods such as removing unnecessary words or symbols
from the entity names. Moreover, they can be used for detecting plural nouns or to take into account
common prefixes or suffixes as well as other natural language features.

2Output tuples from an alignment are called mappings. But using ontology alignments for query purposes is called ontology
mapping.

4 Martinez-Gil / University of Málaga

2. String similarity. Text similarity is a string based method for identifying similar entity names. For
example, it may be used to identify identical concepts of two ontologies if they have a similar name.
The reader can see (10) for more details about this algorithms.

3. Data Type Comparison. These methods compare the data type of the ontology elements. Similar
concept attributes are logically expected to have the same data type.

4. Linguistic methods. This consists of the inclusion of linguistic resources such as lexicons and the-
sauri to identify possible similarities. The most popular linguistic method is to use WordNet (11) to
identify some kinds of relationships between entities.

5. Inheritance analysis. Theses kinds of methods take into account the inheritance between concepts
to identify relationships. The most popular method is the is-a analysis that tries to identify subsump-
tions between concepts.

6. Data analysis. These kinds of methods are based on the rule: If two concepts have the same in-
stances, they will probably be similar. Sometimes, it is possible to identify the meaning of an upper
level entity by looking at a lower level entity. For example, if instances contain a string such as years
old, it probably belongs to an attribute called age.

7. Graph-Mapping. This consists in identifying similar graph structures in two ontologies. These
methods use known graph algorithms to do so. Most of times this involves computing and comparing
paths, adjacent nodes and taxonomy leaves.

8. Statistical analysis. It consists of the extraction of keywords and textual descriptions for detecting
the meaning of the entities in relation to other entities.

9. Taxonomy analysis. It tries to identify similar concepts by looking at their related concepts. The
main idea is that two concepts belonging to different ontologies have a certain degree of probability
of being similar if they have the same neighbours.

10. Semantic methods According to (2), semantic algorithms handle the input based on its semantic
interpretation. One supposes that if two entities are the same, then they share the same interpretation-
s. Thus, they are well grounded deductive methods. Most outstanding approaches are propositional
satisfiability and description logics reasoning techniques.

However, choosing from among this variety of algorithms is far from being a trivial task. Firstly, more
and more are constantly being developed, and this diversity by itself complicates the choice of the most
appropriate tool for a given application domain. Secondly, as one would expect, recent empirical analysis
shows that there is no (and may never be) single dominant matcher that performs best, regardless of the
data model and application domain (12). In fact, due to effectively unlimited heterogeneity and the ambi-
guity of data description, it seems unavoidable that optimal mappings for many pairs of correspondences
will be considered as best mappings by none of the existing matchers. For this reason, it is neccesary to
use composite matchers.

The main idea of composite matchers is to combine similarity values predicted by multiple similari-
ty measures to determine correspondences between ontology elements. The most outstanding proposals
in this way are COMA (13), an extension of COMA (14), QuickMig (15), FOAM (16), iMAP (17) and
OntoBuilder (18), Cupid (19), CMC (20), and MAFRA (21) but they use weights determined by an ex-
pert. Meta-Matching does not use weights from an expert, but selects those that would solve the problem
according to a training benchmark, thus a set of ontologies that have been previously aligned by an expert.

3. Technical Background

Definition 1 (Similarity Measure). A similarity measure sm is a function sm : µ1 × µ2 7→ R that asso-
ciates the similarity of two input solution mappings µ1 and µ2 to a similarity score sc ∈ < in the range
[0, 1]. This definition has been taken from (12)

Martinez-Gil / University of Málaga 5

A similarity score of 0 stands for complete inequality and 1 for equality of the input solution mappings µ1
and µ2.

Definition 2 (Customizable Similarity Measure). A Customizable similarity measure is a similarity mea-
sure that can be parametrized. Example 1 shows a function of this type.

Example (Weighted Similarity Measure). Let ~A be a set of similarity measures and ~w a weight vector
and let O1, O2 be two input ontologies, then we can define wsm as a weighted similarity measures in the
following form:

wsm(O1, O2) = x ∈ [0, 1] ∈ < → ∃
〈
~A, ~w

〉
, x = max(

∑i=n
i=1 Ai · wi)

with the following restriction
∑i=n

i=1 wi ≤ κ
But from the engineering point of view, this function leads to an optimization problem for calculating the
weight vector, because the number of candidates from the solution space (in this case an arbitrary conti-
nous interval) is infinte. For this reason, a brute force strategy would clearly be inefficient. It is neccesary
to look for better computational mechanisms that allow the problem of computing tuneable measures to
be solved more efficiently.

Definition 3 (Ontology Matching). An ontology matching om is a function om : O1 × O2
sm→ A that as-

sociates two input ontologies O1 and O2 to an alignment A using a similarity measure (or a customizable
similarity measure).

Definition 4 (Ontology Alignment). An ontology alignment oa is a set {t,MD}. t is a set of tuples in
the form {(id, e, e′, n,R)}. Where id is a unique identifier, e and e′ are entities belonging to two different
ontologies, R is the relation of correspondence between these entities and n is a real number between 0
and 1 that representing the mathematical probability that R may be true. The entities than can be related
are the concepts, roles, rules and, even axioms of the ontologies. On the other hand, MD is some metadata
related to the matching process for statistical purposes.

Definition 5 (Alignment Evaluation). An alignment evaluation ae is a function ae : A × AR 7→
precision ∈ < ∈ [0, 1] × recall ∈ < ∈ [0, 1] that associates an alignment A and a reference alignment
AR to two real numbers stating the precision, recall of A in relation to AR.

Definition 6 (Meta-Matching Function). A Meta-Matching Function mmf is a function mmf : SC 7→
< that defines how previously calculated similarity score sci ∈ SC. The result is an optimized similarity
score sco ∈ <. We call optimized similarity score to the best possible similarity score.

4. Structural Matching

This work discusses the design and development of a taxonomy-based algorithm to extract some valu-
able information from a kind of ontology entities: concepts. The algorithm can help us to decide if two
concepts are the same but from the point of view of their location in an ontology. This kind of information
can be useful in ontology alignment scenarios.

Definition 7. Taxon is a name designating a class or group of classes. A taxon is assigned a rank and can
be placed at a particular level in a systematic hierarchy reflecting relationships.

Before to designing the algorithm, it is also necessary to define a data structure (DS) to store the data
calculated by the algorithm. The data structure is a simple linked list with six records in each node: depth,
children, brothers, brothers_left, same_level and name. Table 1 tells us the data type and a brief descrip-

6 Martinez-Gil / University of Málaga

Attribute Type Description
depth integer Level of the current taxon (begins with 0).

children integer Number of children of the current taxon

brothers integer Number of brother taxons

brothers_left integer Number of brother taxons that are above this

same_level integer Number of taxons with the same depth

name string ID of the taxon
Table 1

A node of the linked list which stores the information

entry procedure ont2tax (OntoClass cls, List occurs, int depth)
begin

storingInTax(cls, depth) ; Step 2
if (cls.canAs(OntClass.class) AND (NOT occurs.contains(cls)))

while iterator = cls.SubClasses do
OntClass sub := (OntClass) iterator.next
occurs.add(cls)
ont2tax (sub, occurs, depth + 1)
occurs.remove(cls)

end while
end if

end

Fig. 2. Procedure for converting an ontology into a taxonomy

tion of each of these records.

4.1. The Structural Algorithm

The algorithm that we propose is divided into three high level steps:

1. To convert the ontology into a taxonomy (See Fig. 2).
2. To store the taxonomy in some parts of a special data structure (See Fig. 3).
3. To order and fill the data structure with complementary calculations (See Fig. 4).

Finally, it is necessary to call the algorithm (See Fig. 5). The philosophy of the SIFO algorithm consists
of detecting the changes in the depths of each taxon in the taxonomy. In this way, it is possible to count
the different kinds of neighbours that a concept may have.

4.1.1. First Step. Converting an ontology into a taxonomy.
This is the first step which consists of converting the ontology into a taxonomy which will allow us to

compute more easily the data related to the neighborhood of each concept into the ontology. The procedure
is inspired by one offered by the Jena API to visit all the concepts in an ontology.

4.1.2. Second Step. Storing the taxonomy in the data structure.
The storingInTax method has the following interface: storingInTax (int depth, int children, int brothers,

int brotherontheleft, string name) where each argument is the value for a new entry in the DS. However, in
this second step, we only know the depth (number of indents for the taxon) and the name of each concept,
so we can only partially fill the data structure, thus, we can only invoke the procedure with the arguments
depth and concept name.

Martinez-Gil / University of Málaga 7

entry procedure storingInTax(OntoClass cls, int depth)
begin

Element e:= new Element (depth, 0, 0, 0, 0, cls.getName)
DS.add (e)

end

Fig. 3. Procedure for partially storing the taxonomy

Concept Depth Children Brothers Left brothers Same level

SLR 0 0 5 0 5

Money 0 0 5 1 5

BodyWithNonAd. 0 0 5 2 5

Range 0 0 5 3 5

Window 0 4 5 4 5

PurchaseableItem 1 2 3 0 4

Camera 2 0 1 0 1

Digital 2 0 1 1 1

Large− Format 1 0 3 1 4

Lens 1 0 3 2 4

Body 1 0 3 3 4

V iewer 0 1 5 5 5

HQ− V iewer 1 0 0 0 4
Table 2

Data structure obtained from the taxonomy of Fig.6

4.1.3. Third Step. Ordering and filling the data structure.
With data stored in the DS, we can now detect the changes in the depth of the entries in the taxonomy

to compute the number of children, brothers and, so on. It is necessary to take into account the following
details:

– All taxons with the same depth are same level taxons.
– A chain of brothers is a chain of taxons at the same level.
– A change to an outer taxon breaks a chain of brothers.
– All brothers with a previous position are on the left.
– Given a taxon, if the following concept has an inner depth, it is a child.
– A chain of children can only be broken by a change to an outer taxon.
– An inner taxon (grandson taxon) does not break a chain of children.

Calling to the algorithm. Now, it is necessary to invoke the SIFO algorithm. At this point it is necessary
to define the ontology model (for example OWL) and to locate the classes without ancestors, in order to
begin to visit all the concepts. Note that the ArrayList is necessary to store the visited concepts. Fig. 5
shows the related portion of pseudocode.

4.1.4. A trace to the algorithm with a small example
We have a choosen a small ontology from a camera to see a trace of the algorithm. In Fig. 6., we can

see a graphical representation of the ontology, in Fig. 7 we can see a taxonomic representation of such
ontology, we have obtained this taxonomy as result of applying the step 1 of SIFO. Finally, in Table 2 we
can see the completed data structure that has been obtained from steps 2 and 3 of SIFO.

4.2. Results

The purpose of this section is not only to show numeric results about a Java implementation of SIFO
but, to show the relative ease with which a new ontology and taxonomy matchers can be developed, based

8 Martinez-Gil / University of Málaga

entry procedure fillin (void)
var children, brothers, brothers_left: integer
var same_level, i, j, k, t: integer
var flag: boolean
begin

for i := 0 to DS.size
children, brothers, brothers_left := 0
flag := false
for j := 0 to DS.size

if (j < i)
if (DS[i].depth = DS[j].depth)

brothers++
brothers_left++

end if
if (DS[i].depth < DS[j].depth)

brothers := 0
brothers_left := 0

end if
end if
if (j > i)

if (DS[i].depth = DS[j].depth)
brothers++

end if
; detect and end-of-children
if (DS[i].depth < DS[j].depth)

break
end if

end if
; code for counting children
if ((j = i+1) AND (DS[i].depth = DS[j].depth - 1) AND (NOT flag))

for k := j to DS[j].depth < DS[k].depth
if (DS[j].depth = DS[k].depth)

child++
flag := true

end if
end for

end if
end for
for t := 0 to DS.size

if (NOT t=i) AND (DS[i].depth = DS[t].depth)
same_level++

end if
end for
DS[i].addNumChildren (children)
DS[i].addNumBrothers (brothers)
DS[i].addNumBrothersOnTheLeft (brother_left)
DS[i].addNumSameLevel (same_level)

end for
end

Fig. 4. Procedure for reordering and filling the data structure

Martinez-Gil / University of Málaga 9

OntoModel m := createOntologyModel
Iterator i := m.listHierarchyRootClasses()
while i.hasNext() do

onto2tax((OntClass) i.next(), new ArrayList(), 0)
end while
fillin ()

Fig. 5. Calling to SIFO

camera:SLR
camera:Money
camera:BodyWithNonAdjustableShutterSpeed
camera:Range
camera:Window

camera:PurchaseableItem
camera:Camera
camera:Digital

camera:Large-Format
camera:Lens
camera:Body

camera:Viewer
camera:HQ-Viewer

Fig. 6. Taxonomic representation of the ontology from Fig. 5

on the data obtained from SIFO. In the next subsections we are going to show three use cases: how to use
the algorithm to compute the leaves in a taxonomy, how to use it to obtain the structural similarity of two
ontologies and finally how to use to align similar ontologies.

4.2.1. Using SIFO to compute the number of leaves in a taxonomy
As we commented earlier, there are techniques that compute the leaves in a graph for perfoming a graph

analysis. In this sense, SIFO is easy to extend in order to compute the number of leaves in a taxonomy. To
do so, it is only necessary to compute the number of the deepest taxons. Figure 8 shows how this can be
done.

We have computed the leaves of the taxonomy for an example but, it is possible to compute other
features such as paths. If readers think that the attributes we provide are not enough, it is easy to get others.

4.2.2. Using SIFO for comparing structural similarities
Definition 8. We define the structural index of an ontology as a number that tells global information about
the total number of children, brothers and so on.

It is possible to use SIFO for extracting structural indexes of ontologies in order to compare its structural
similarity. As we show in the state-of-the-art, some techniques use statistical methods for obtaining the
structural similarity. It can be useful for adjusting the quality of the generated mappings, for example.

We have used the data structure filled by the algorithm for computing structural indexes of ontologies in
several domains: bibliography, departments, genealogy and people. Then we have compared them. Table
3 shows the results we have obtained. Obviously, the higher percentage, the higher the structural similarity
of the compared ontologies.

10 Martinez-Gil / University of Málaga

var max, leaves: integer
max := leaves := 0
for i := 0 to DS.size

if (DS[i].depth > max)
max := DS[i].depth

end if
end for
for j := 0 to DS.size

if (DS[j].depth = max)
leaves++

end if
end for
return leaves

Fig. 7. Computing the leaves

var acum : integer
acum := 0
for i := 0 to DS.size

acum := acum + DS[i].depth
acum := acum + DS[i].children
acum := acum + DS[i].brothers
acum := acum + DS[i].leftbrothers
acum := acum + DS[i].samelevel

end for
return acum

Fig. 8. Portion of code to extract a structural index of the ontology

Ontologies Structural Similarity Percentual

Bibliography (14)vs(15) 515/6890 7.4%

Departments (16)vs(17) 4515/57380 7.8%

Genealogy (18)vs(19) 180/275 65.4%

People (23)vs(24) 525/3150 16.6%
Table 3

Comparison of indexes of structural similarity

4.3. SIFO in real alignment situations.

To obtain more accurate ontology alignments, we can combine SIFO with other algorithms. For exam-
ple, the similarity between two concepts could be given by the formula:

similarity(c1, c2) = Levenshtein⊕ y · info from SIFO

where y ∈ [0, 1]

This formula allow us to align ontologies from the point of view of the elements and from the ontology
structure. The Levenshtein algorithm (22) calculates the string similarity, SIFO gives information about
the structure and y is a corrector that depends on the trust in the similarity of domains.

We are going to use the information from SIFO for aligning (23) and (24) in the following way:

Martinez-Gil / University of Málaga 11

People1 People2 n
Male Divorce .600

IndividualEvent Marriage .600

Event FamilyEvent .600

FamilyEvent Death .600

Individual Birth .600

Female IndividualEvent .600

DeathEvent Family .600

MarriageEvent Individual .600
Table 4

Structural results

People1 People2 Lev SIFO Total
Divorce DivorceEvent .582 0 .582

Marriage MarriageEvent .615 0 .615

FamilyEvent FamilyEvent 1.00 0 1.00

Death DeathEvent .500 0 .500

Birth BirthEvent .500 0 .500

IndividualEvent IndividualEvent 1.00 0 1.00

Event Event 1.00 0 1.00

Family Family 1.00 0 1.00

Male Divorce .141 .600 .741

IndividualEvent Marriage .200 .600 .800

FamilyEvent Death ≈ 0 .600 .600

Individual Birth .100 .600 .700

Female IndividualEvent .020 .600 .620

DeathEvent Family .010 .600 .610

MarriageEvent Individual .007 .600 .607
Table 5

Final results for the alignment.

If(DS.taxon.attribute = DS2.taxon.attribute)→ sim = sim+ 0.2

Table 4 shows the results from SIFO and. Table 5 shows the total results we have obtained (Because the
ontologies belongs to exactly the same domain we have chosen y = 1):

Finally, we have set a benchmark in order to prove the efficiency of an implementation of our algorithm.
We have used a portion of the benchmark provided by the Ontology Evaluation Initiative (25) to test
matching tools and have measured the times using a Intel Centrino, 1.66 GHz and 512 MB for RAM. The
times have not always been the same (due to the time slice effect in monoprocessor systems), so we have
listed (Table 6) ten times and we have computed the average.

4.4. Discussion

We have extended Table 7 from (26) for comparing the computation complexity of some of the best
alignment tools. SIFO is not a tool, but it can be implemented in that form. Included tools are NOM (27),
PROMPT (28), Anchor-PROMPT (29), GLUE (30) and QUOM (31). All of the complexity values in
Table 7 are given working in the assumption that gaining access to the ontology implies a constant penalty.

As it can be appreciated, the complexity of SIFO is as good as the considered tools. Therefore, it seems
to be a good idea to include it in matching tools to suplement other methods.

Our proposal, like most of solutions in the field of engineering, has several advantages, but also several
disadvantages. These are some of them:

Strengths

12 Martinez-Gil / University of Málaga

Ontology AverageT ime (seconds)

101 .062

102 .312

103 .063

104 .062

201 .047

202 .062

203 .046

204 .063

224 .092

225 .032

226 .031

Bib/MIT .093

BibTeX/UMBC .031

Karlsruhe .125

INRIA .112
Table 6

Process time for some ontologies

Tool Complexity
NOM O(n2 · log2n)

PROMPT O(n · log n)

Anchor − PROMPT O(n2 · log2n)
GLUE O(n2)

QOM O(n · log n)

SIFO O(n · log n)
Table 7

Comparing complexities

– It allows information to be obtained that can be helpful in order to take decisions in alignment scenar-
ios. As we have shown in the example, SIFO is able to discover reasonable correspondences between
ontologies to align.

– The algorithm that we propose is valid for ontology alignment, but also for aligning taxonomies or
directory listings.

– Its computational complexity is the same as the most efficient alignment techniques we have studied.

Weakness

– Related to ontology alignments, it is neccesary to combine SIFO with other techniques to get satis-
factory results.

Beyond the numeric results we have obtained, we have shown that to obtain new ontology matchers
from the data structure that we provide is relatively easy.

As future work, we propose to improve the algorithm so that it takes into account the order of the
elements. Note that some attributes like the number of brothers or children will be always identical but,
for instance, the brothers on the left is an attribute which depends on the order. Two ontologies can be the
same altough the taxons are not in the same order, so it is necessary to apply an extra step for ordering
(in alphabetical order) the elements of the ontology. In this way, reorders of the taxons will not be able to
defraud the algorithm.

5. Linguistic Matching

Nowadays there are a lot of techniques and tools for addressing the ontology alignment problem, how-
ever, the nature of the problem means existing solutions for real situations are not fully satisfactory. As a

Martinez-Gil / University of Málaga 13

result, the Google Similarity Distance has appeared recently. Its purpose is to mine knowledge from the
Web using Google in order to obtain satisfactory alignments. This section consists of an experiment for
testing not only Google, but other search engines using this similarity distance.

In fact, we are interested in three characteristics of the World Wide Web (WWW):

1. It is one of the biggest databases in the world. And possibly the most valuable source of general
knowledge.

2. It is close to human language, and therefore can help to address problems related to the natural
language processing.

3. It provides mechanisms to separate relevant from non-relevant information.

In this way, we believe that the most outstanding contribution of this work is the identification of the
best sources of web knowledge for solving the problem of aligning ontologies precisely. In fact, in (38),
the authors state: "We present a new theory of similarity between word and phrases based on information
distance and Kolmogorov complexity. To fix thoughts, we used the World Wide Web (WWW) as the
database, and Google as the search engine. The method is also applicable to other search engines and
databases". Our work is about those search engines.

Under no circumstances can this work be considered as a demostration that one particular search engine
is better than another or that the information it provides is more accurate.
Definition 9 (Similarity measure). A similarity measure sm is a function sm : µ1 × µ2 7→ R that asso-
ciates the similarity of two input solution mappings µ1 and µ2 to a similarity score sc ∈ < in the range
[0, 1].

A similarity score of 0 stands for complete inequality and 1 for equality of the input solution mappings µ1
and µ2.

Definition 10 (Hit). Hit is an item found by a search engine to match specified search conditions. More
formally, we can define a hit as the function hit : ϑ 7→ N which associates a natural number to a word
(or set of words) to ascertain its popularity in the Internet.

A vaule of 0 stands for no popularity and the bigger the value, bigger its associated popularity.

5.1. Design of our Experiment

To carry out our experiment, we are going to use the following method to measure the popularity of two
terms: Let c1 and c2 concepts belong to two differents ontologies, let : be a string concatenation operator,
then:

similarity(c1, c2) = hit(c1:c2)+hit(c2:c1)
hit(c1)×hit(c2)

χ

This similarity measure gives us an idea of the number of times that two concepts appear together in
comparison with the number of times that the two concepts appear separately.

We have chosen arbitraruly the following search engines for testing the metric: Google3, Yahoo4, Ly-
cos5, Altavista6, MSN7 and Ask 8.

Some of these companies do not allow many queries to be launched in order to extract knowledge, so
we have designed a small experiment: we are going to align two small ontologies from Russia (32) and
(33) because some ontology matching tools have used these ontologies in the past.

3http://www.google.com
4http://www.yahoo.com
5http://www.lycos.com
6http://www.altavista.com
7http://www.msn.com
8http://www.ask.com

14 Martinez-Gil / University of Málaga

Russia1 Russia2 Google Yahoo Lycos AltaVista MSN Ask
food food 1.00 0.00 0.01 1.00 0.01 0.02
drink drink 1.00 0.01 0.30 1.00 0.06 0.04

traveller normal_traveller 0.00 0.00 0.00 0.00 0.00 0.00
health_risk disease_type 0.00 0.00 0.00 0.00 0.00 0.00
time_unit time_unit 0.00 0.00 0.00 1.00 0.00 0.00
document document 1.00 0.00 0.01 1.00 0.01 0.02
approval certificate 0.84 0.20 0.00 1.00 0.00 0.00
payment means_of_payment 0.00 0.45 0.00 1.00 0.00 0.00

monetary_unit currency 0.00 0.42 0.00 1.00 0.00 0.00
unit unit 1.00 0.00 0.01 1.00 0.03 0.03

adventure sport 1.00 0.01 0.03 1.00 0.04 0.40
building public_building 0.40 0.11 0.00 1.00 0.00 0.00

flight air_travel 0.80 0.15 0.03 1.00 0.02 0.00
river_transfer cruise 0.00 0.12 0.00 1.00 0.00 0.00

railway train_travel 0.00 0.98 0.00 1.00 0.00 0.00
political_area political_region 0.00 0.40 0.00 1.00 0.00 0.00

Table 8
Results obtained from the different search engines

Russia1 Russia2 Min. Max. Arit. FOAM RiMOM
food food 0.00 1.00 0.34 1.00 0.50
drink drink 0.01 1.00 0.40 1.00 0.71

traveller normal_traveller 0.00 0.00 0.00 0.00 0.00
health_risk disease_type 0.00 0.00 0.00 0.00 0.17
time_unit time_unit 0.00 1.00 0.17 1.00 1.00
document document 0.00 1.00 0.34 1.00 0.99
approval certificate 0.00 1.00 0.34 0.00 0.21
payment means_of_payment 0.00 1.00 0.24 0.00 0.37

monetary_unit currency 0.00 1.00 0.24 0.00 0.00
unit unit 0.00 1.00 0.35 1.00 1.00

adventure sport 0.01 1.00 0.41 0.00 0.01
building public_building 0.00 1.00 0.25 0.80 0.60

flight air_travel 0.00 1.00 0.17 0.00 0.62
river_transfer cruise 0.00 1.00 0.19 0.00 0.21

railway train_travel 0.00 1.00 0.33 0.00 0.54
political_area political_region 0.00 1.00 0.23 0.00 0.40

Table 9
Comparison of the obtained mappings

5.2. Empirical Evaluation

Table 8 shows the result we have obtained.
Table 9 shows a comparison of the mappings obtained, where Min.=Minimun Max.=Maximum Ar-

it.=Arithmetic mean. FOAM (16) and RiMOM(34) are matching tools that have provided good results for
the Ontology Alignment Contest (25) in the past.

Moreover, it is important to point out that this experiment was performed in February 2008. Because
information indexed by search engines is not static.

5.3. Related Work

Several authors have used Web Knowledge in their works, or rather they have used a generalization of
it: background knowledge (35)(36)(37). Background knowledge involves all kind of sources for extracting

Martinez-Gil / University of Málaga 15

information: dictionary, thesauri, search engines, and so on, so Web Knowledge can be considered a
subtype of it.

On the other hand, these works present methodologies and validations for these methodologies, but they
do not provide comparison statistics. Our work can be seen as an extension of (38)(39)(40), where several
formulas and mechanisms to benefit from Google knowledge are provided. Our work is similar to these
studies, but whereas they focus in theoretical aspects, we have focussed on the more practical side, and
we provide a statistical analysis of a larger set of web sources.

6. Statistical Matching

This section is about an experiment in which we have compared the textual rendering of ontologies in
order to get more accurate alignments between them. The experiments we have performed consist on three
main steps: rendering in a textual way two ontologies, comparing the obtained text with several algorithms
for text comparing and, using the obtained result as a factor to improve the alignments between them. As
result, we got some evidences that this technique gives us a good measure of the similarity of ontologies
and, therefore can allow us to improve the effectiveness of the alignment process.

6.1. Problem Statement

Definition 11. Textual rendering of an ontology is the result of printing the information contained in that
ontology.
It can be expressed more formally, let e an entity from an ontology O, and let t(e) a function that prints
the identifier of an entity, then a textual rendering T from an ontology O is an expression such:

∀e ∈ O,∃t(e)⇒ T (O) = {t(e)}

Example 1. Textual rendering for Figure 9 is A man is a person. A woman is a person.
Now, we are going to explain why we think that textual renderings of ontologies are interesting.

Example 2. Note Figure 9 and Figure 10; they are very simple ontologies. They are very similar, too.
For example, it is easy to align the concepts man and woman, using any algorithm for string matching.
But, what is about person and human being? We know that both represent the same object of the real
world, but what computer algorithm can tell us that are the same? Based on string similarity techniques
cannot. Based on taxonomy algorithms can increase the probability, but it is not enough. Based on Word-
Net algorithms can, but they are dangerous; imagine such concepts as ’plane’ and ’aeroplane’, they are
synonyms, but only in some situations. We think that we can solve this problem and we are going to make

Fig. 9. Ontology sample number 1

16 Martinez-Gil / University of Málaga

Fig. 10. Ontology sample number 2

an experiment to show it: Let’s remember the textual rendering from the first ontology: A man is a person.
A woman is a person.

On the other hand, textual rendering for the second ontology sample is: A man is a human being. A
woman is a human being. Now, if we compare the two textual renderings using an algorithm as Loss of
Information (LOI) (13), we have a 76.9 percent of similarity between them. We propose to use this result
as a factor to increase the probability of the mappings in the output alignment.

In this sense, we think that we can use this observation in order to formulate a generic technique for
improving ontology mappings.

The experiment that we are going to perform consists of a previous task and then three steps. The
previous task is to launch a task to align the ontologies. It is interesting to launch a simple algorithm in
order (as a based on similarity string algorithm) to see how much the next steps increase the quality of the
alignment. Then:

1. Rendering the ontologies.
2. Comparing the obtained text.
3. Using the result as a factor to increase the probability of the mappings may be true.

Although we have defined textual rendering already, there are several ways to render the ontology in a
textual way:
Definition 12. Crude rendering is the kind of rendering that only prints the information of the concepts
and properties, excluding the relations. So it loses information about the structure. It is good when we
wish to compare only the content of the ontologies.

– Definition 12.1. Partial Crude rendering is a kind of rendering used to compute the similarity rate
between a concrete kind of entities in two ontologies. It is useful in cases where concepts are very
similar but other entities (properties, relations, instances, so on) are very different.

– Definition 12.2. Full Crude rendering is a kind rendering used to compare the contents of the whole
ontologies. It seems to be useful when compared ontologies are very closed.

Definition 13. Full rendering is the kind of rendering which allows to rebuild the ontology because it
prints information about the content and the structure. So it is a rendering without loss of information. It
is useful in order to compare not only the contents, but the structures.

– Definition 13.1. Partial Full rendering prints all the information related to a kind of entities. As we
commented earlier, it is useful when concepts are closed, but we think that there are very different
instances, for example.

– Definition 13.2. Complete rendering prints all the information of the ontology, so the process is
reversible.

Martinez-Gil / University of Málaga 17

Crude renderings try to get a measure of the resemblance of the vocabularies. In full renderings, the
resemblance of vocabularies is important, but each time that a entity appear we print a more elaborated
message about it. Note that the message we print is similar for the two ontologies, so we are increasing
the similarity between the generated text, but also reducing the importance of the vocabularies.

In order to get empirical results from our theory, we are going to perform an experiment over two public
ontologies. We have chosen the ontology about bibliography of the Institute of Information Sciences (ISI)
from California, USA (41). And the ontology about bibliography from the University of Yale (42), in the
United States too. Originally, both ontologies were in DAML format, but we have converted them into
OWL format in order to allow our software to process them. We have chosen them because we guess
they have a high degree of commonality and, therefore the experiment could show us the merits of our
proposal. Other important details we have considered are:

– The argument R of the mappings (relation between the entities) will be Equivalence only.
– We have determined that the degree of similarity between the textual renderings will be used for

increase the n of the mappings (probability of relation between them be true).

ISI Yale n
patent Literal 0.285

collection Incollection 0.833

collection Publication 0.545

booklet Incollection 0.333

booklet Book 0.428

techreport Techreport 0.900

phdthesis Inproceedings 0.307

book Book 0.750

manual Literal 0.285

incollection Incollection 0.916

incollection Publication 0.416

conference Incollection 0.250

proceedings Inproceedings 0.846

inproceedings Inproceedings 0.923

article Article 0.857

inbook Incollection 0.250

inbook Book 0.500
Table 10

Concept alignment. Threshold: 0.25

6.2. Results

1. At first time, we have performed a syntactic alignment of the ontologies. We have used the Leven-
shtein algorithm (22). Table 10 shows the results for the concept alignment. We have determined a
low threshold for getting a significative number of pairs. Table 11 shows the results for the properties
alignment. Many of them are the same in both ontologies.

2. At second time, we have performed the rendering over ontologies from the ISI and Yale. We have
used Full Crude Rendering. In this way, we give more importance to the similarity of the vocabularies
than to the structure of the ontologies.

3. We have used the Loss Of Information (LOI) algorithm for comparing both generated texts, we have
obtained a similarity degree of 42.2 percent.

4. Finally, we have used that 42.2 percent for increase the argument n of the mappings be true (we have
used the formula n = n + (0.422 · n). In this way, the higher values are increased significatively,
while lower probabilities not. Table 12 and Table 13 shows us the new results for the concepts and
the properties respectively.

18 Martinez-Gil / University of Málaga

ISI Yale n
title title 1.000

title booktitle 0.555

note note 1.000

institution institution 1.000

howpublished publisher 0.667

editor editor 1.000

number number 1.000

author author 1.000

volume volume 1.000

location Publication 0.636

year year 1.000

publisher publisher 1.000

mrnumber number 0.750

annote note 0.666

booktitle title 0.555

booktitle booktitle 1.000

edition editor 0.714

organization Publication 0.500

pages pages 1.000

affiliation Publication 0.545
Table 11

Property alignment. Threshold: 0.5

In Table 14, we have extracted a statical summary from the results of our proposal9

As you can see, at least in this case, we have improved the precision, we have kept the recall and, of
course, we have increased the F-Measure. But there are bad news too, the number of false positives has
increased. We have considered that a relation is true when its n argument is equal or greater than 0.9.

Finally, we have repeated the experiment using ontologies from other fields: academic departments,
people and genealogy. As you can see in Table 15, we cannot determine any kind of relation between the
improved precision and the similarity of the textual renderings, but according to the performed experi-
ments, the technique that we propose is able to improve the precision of the mappings.

6.3. Discussion

Note that there are a lot of concepts and properties that could be aligned using a string normal-
ization algorithm. However, there are a few couples which couldn’t. For instance: proceedings and
Inproceedings, mrnumber and number, collection and Incollection and so on. Therefore, the advan-
tages are that we have into account the similarity of the ontologies for improving the mappings. In this
way, we can enrich the results generated by simple methods. We provide several ways to proceed: giving
more importance to the vocabulary or giving more importance to the whole ontology. Moreover, to have
into account only concrete parts of the ontologies is possible. The result of our experiment tell us that it is
possible to improve the precision and F-measure of the alignment process. There are some disadvantages
too; it is necessary to combine this technique with other ones, that it is to say, it is not good enough as to

9We have used the following formulas for the calculations:

Precision =
Correct relations

Correct relations+ Incorrect relations

Recall =
Correct relations

Correct relations+Not found relations

F −Measure =
2 · precision · recall
precision+ recall

Martinez-Gil / University of Málaga 19

ISI Yale n (Improved)
patent Literal 0.405

collection Incollection 1.000
collection Publication 0.774

booklet Incollection 0.473

booklet Book 0.608

techreport Techreport 1.000
phdthesis Inproceedings 0.436

book Book 1.000
manual Literal 0.405

incollection Incollection 1.000
incollection Publication 0.591

conference Incollection 0.355

proceedings Inproceedings 1.000
inproceedings Inproceedings 1.000

article Article 1.000
inbook Incollection 0.355

inbook Book 0.711
Table 12

Improved Concept alignment. Threshold: 0.25

ISI Yale n (Improved)
title title 1.000

title booktitle 0.788

note note 1.000

institution institution 1.000

howpublished publisher 0.946
editor editor 1.000

number number 1.000

author author 1.000

volume volume 1.000

location Publication 0.903

year year 1.000

publisher publisher 1.000

mrnumber number 1.000
annote note 0.946
booktitle title 0.788

booktitle booktitle 1.000

edition editor 1.000

organization Publication 0.710

pages pages 1.000

affiliation Publication 0.774
Table 13

Improved Property alignment. Threshold: 0.5

Before Later
Precision 63.1% 79.1%

Recall 92.3% 92.3%

F −Measure 74.9% 86.5%
Table 14

Summary from the experiment

20 Martinez-Gil / University of Málaga

Ontologies Similarity Precision
Departments [40] vs [41] 14.8% +12.5 p.p.

People [23] vs [24] 19.2% +8.3 p.p.

Bibliography [42] vs [43] 42.2% +16.0 p.p.

Genealogy [44] vs [45] 61.2% +7.6 p.p.
Table 15

Results obtained from alignments in other domains

generate good mappings by itself. Besides, it increases the number of false positives. On other hand, you
may wondered why we have not improved the recall. Think that we improve existing results, we do not
look for new ones. We increase the probabilities of the relations be true, as higher are these probabilities,
more be incremented and vice versa. But, we do not launch a alignment task again. In the experiments,
we have obtained a good degree of similarity, we think that this result means that compared ontologies
are similar, but we knew that we have been aligned closed ontologies. We have to study this detail more
in depth in order to formulate a more accurate methodology. In this work, we have proposed a technique
for getting more accurate ontology alignments. This technique is based on the comparison of the textual
renderings of the ontologies to align. According to the experiments we have performed, we can conclude
that comparing the textual rendering of the ontologies to align is able to improve the precision of the
alignment process. However, there is work to do: At first time it is necessary to test a bigger quantity of
ontologies, we are going to test the benchmark provided by the Ontology Alignment Evaluation Initiative
(OAEI) (25). Moreover, it is important to determine clearly what kind of rendering is more appropriate ac-
cording to the situation, and what are the best algorithms for comparing the text obtained from the textual
rendering. In this way, we wish to use not only LOI algorithm, but other text metrics.

7. Meta-matching Techniques

What exactly is ontology Meta-Matching in practice? It is the technique of selecting the appropiate
algorithms, weights and thresholds in ontology alignment scenarios. Figure 11 shows a diagram for mod-
elling the actions in a Meta-Matching process.

Note that algorithms do not need to be reconsidered. The idea is to provide all possible algorithms
initially and then automatically associate a weight of 0 to those that are not useful for solving the problem.
How the algorithms are used or the weights and the threshold recalculated are what makes one Meta-
Matching strategy better than another, in terms of accuaracy and time consumption.

In general, we can describe the followings as characteristics from a Meta-Matching task:

– It is not necessary for it to be done at runtime.
– It must be an automatic process.
– It must return the best possible matching function.

Moreover, Meta-matching can be seen from two points of view: (i) From the point of view of the
algorithmic techniques used to obtain the matching function:

– Aggregation. This technique (47) determines the upper bound T(n) on the values obtained from a
sequence of n matchers, then calculates the average value to be T(n)/n.

– Combination. The main idea is to combine similarity values predicted by multiple matchers to de-
termine correspondences between ontology entites. Where combinations can be as simple as: arith-
metic or harmonic means, maximum, minimun, Minkowski distances, any kind of weighted product
or sum, and so on, or more complex combinations like Linguistic Combinations (48)

– Composition. Let f1, f2, ..., fn be n unique matchers, a composition is a function f(O1, O2) =
f1◦f2◦ ...◦fn. Thus, the idea of this mechanism is to use simple functions to build more complicated
ones

Martinez-Gil / University of Málaga 21

Fig. 11. General model for Meta-Matching

(ii) From the point of view of the computer science paradigm that makes the Meta-Matching possible,
i.e. the form of recalculating the parameters. Although, this problem can be solved trivially by a brute
force search when the number of matchers to use is low, Meta-Matching scales better for a higher number
of matchers. For this reason we do not include brute force methods as a viable technique. These are the
two main groups of techniques considered:

– Heuristic Meta-Matching, where the most outstanding approaches are Based on Genetic Algorithms
meta-matching. In such case, it is said that parameters are optimized and, Greedy meta-matching, in
such case, it is said that parameters are estimated.

– Based on Machine Learning meta-matching, where the most outstading approaches are Relevance
Feedback and Neural networks training for meta-matching. In both cases, it is said that parameters
are learned.

7.1. Heuristic Meta-Matching

A heuristic is a method to help to solve a problem, commonly informal. It is particularly used for a
method that may lead to a solution which is usually reasonably close to the best possible answer.

Two fundamental goals in computer science are to find algorithms with probably good run times and
with probably good or optimal solution quality. A heuristic is an algorithm that abandons one or both of
these goals; for example, it usually finds pretty good solutions, but there is no proof that the solutions
could not get arbitrarily bad; or it usually runs reasonably quickly, but there is no argument that this will
always be the case.

Therefore, the use of heuristics is very common in real world implementations. For many practical
problems, a heuristic algorithm may be the only way to get good solutions in a reasonable amount of time.

A lot of tools clearly implements heuristic Meta-Matching, we can see the most clear example in the
default configuration of COMA (13), where an expert has adjusted initially the weights of the conceptual
and structural techniques respectively. In order to avoid the human interaction in this field, we can use
Genetic Algorithms for optimizing the parametrers or Greedy Algorithms to estimate them.

22 Martinez-Gil / University of Málaga

7.1.1. Based on Genetic Algorithms methods
Genetic Algorithms (GAs) (49) are adaptive heuristic search algorithm premised on the evolutionary

ideas of natural selection and genetic. The basic concept of GAs is designed to simulate the natural evolu-
tionary system.

This approach that is able to work with several goals (50): maximizing the precision, maximizing the
recall, maximizing the f-measure or reducing the number of false positives. Moreover, it has been tested
combining some leading-edge similarity measures over a standard benchmark and the results obtained
show several advantages.

Another proposal is (51), a genetic algorithm-based optimization procedure for ontology matching
problem that is presented as a feature-matching process. First, from a global view, we model the problem
of ontology matching as an optimization problem of a mapping between two compared ontologies, and
every ontology has its associated feature sets. Secondly, as a powerful heuristic search strategy, a genetic
algorithm is employed for the ontology matching problem. Given a certain mapping as optimizing object
for GA, a fitness function is defined as a global similarity measure function between two ontologies based
on feature sets.

7.1.2. Greedy Meta-Matching
Greedy (52) Meta-Matching is a technique which, given a particular matching task, tries to automati-

cally tune an ontology matching function. For that purpose, it tries to choose the best matchers and pa-
rameters to be used, but with a short-sighted strategy. The most popular example of this technique can be
found at (53). Results from Greedy techniques are, in general, worse than those based on Genetics, but its
computation time also tends to be much lower.

7.2. Based on Machine Learning methods

Based on Machine Learning (54) Meta-Matching techniques considers both schema information and
instance data. This kind of Meta-Matching can be divided into two subtypes10:

7.2.1. Relevance Feedback.
This kind of approaches explores the user validation of initial ontology alignments for automatically

optimising the configuration parameters of the matching strategies. A clear example of this kind of Meta-
Matching is (55). Using such techniques we are able to avoid the user, and maybe the context, the depe-
dency of the matching task, however, it implies spending much time on training the systems. To do that
automatically, it is possible to use Neural Networks.

7.2.2. Neural Networks Training for Meta-Matching.
A neural network (56) is an interconnected group of artificial neurons that uses a mathematical or

computational model for information processing based on a connectionistic approach to computation.
In most cases a neural network is an adaptive system that changes its structure based on external or
internal information flowing through the network. In more practical terms neural, networks are non-linear
statistical data modeling or decision making tools. They can be used to model complex relationships
between inputs and outputs or to find patterns in data.

Neural networks training for Meta-Matching consist of training a neural network with heterogeneous
enough benchmarks and then using the knowledge to predict new similarity functions. This is the case of
(57) where authors exploit an approach to learn the weights for different semantic aspects of ontologies,
through applying an artificial neural networks technique.

Another approach consists of an automatic ontology alignment method based on the recursive neural
network model that uses ontology instances to learn similarities between ontology concepts. Recursive
neural networks are an extension of common neural networks, designed to process efficiently structured
data (58).

10Although learning techniques exist such as Bayes learning, WHIRL learning, decision trees or stacked generalisation, there
are no Meta-Matching proposals using them as yet

Martinez-Gil / University of Málaga 23

8. Greedy Strategy

In this section, we are going to discuss the greedy strategy to solve the Meta-Matching problem. More-
over, we propose an efficient greedy algorithm and compute its associated complexity according to the O
notation.

8.1. Maximum Similarity Measure

An inital approach for an ideal Customizable Similarity Measure which would be defined in the follow-
ing way:

Let ~A be a vector of atomic matching algorithms in the form of a similarity measure and ~w a numeric
weight vector then:

MaSiMe(c1, c2) = x ∈ [0, 1] ∈ < → ∃
〈
~A, ~w

〉
, x = max(

∑i=n
i=1 Ai · wi)

with the following restriction
∑i=n

i=1 wi ≤ 1

But from the point of view of engineering, this measure leads to an optimization problem for calculating
the weight vector, because the number of candidates from the solution space is infinte. For this reason,
we present MaSiMe, which uses the notion of granularity for setting a finite number of candidates in that
solution space. This solution means that the problem of computing the similarity can be solved in a poli-
nomial time.

Definition 14. Maximum Similarity Measure (MaSiMe).

MaSiMe(c1, c2) = x ∈ [0, 1] ∈ < → ∃
〈
~A, ~w, g

〉
, x = max(

∑i=n
i=1 Ai · wi)

with the following restrictions
∑i=n

i=1 wi ≤ 1 ∧ ∀wi ∈ ~w,wi ∈ ˙{g}

Example 3. Given an arbitrary set of algorithms and a granularity of 0.05, calculate MaSiMe for the pair
(author, name_author).

MaSiMe(author, name_author) = .542 ∈ [0, 1]→
∃〈A = (L,B,M,Q), w = (0.8, 0, 0, 0.2), g = 0.05〉 , 0.542 = max(

∑i=4
i=1Ai · wi)

Where L = Levhenstein (22), B = BlockDistance (13), M = MatchingCoefficient (13) , Q =
QGramsDistance (58)

There are several properties for this definition:

Property 1 (Continiuous uniform distribution). A priori, MaSiMe presents a continuous uniform dis-
tribution in the interval [0, 1], that is to say, its probability density function is characterised by

∀ a, b ∈ [0, 1]→ f(x) = 1
b−a for a ≤ x ≤ b

Property 2 (Maximality). If one of the algorithms belonging to the set of matching algorithms returns a
similarity of 1, then the value of MaSiMe is 1.

∃Ai ∈ ~A, Ai(c1, c2) = 1→MaSiMe(c1, c2) = 1

Moreover, the reciprocal is true

MaSiMe(c1, c2) = 1→ ∃Ai ∈ ~A, Ai(c1, c2) = 1

24 Martinez-Gil / University of Málaga

Example 4. Let us suppose that we have: ~A = (Google Similarity Distance (38), BlockDistance, Match-
ingCoefficient, QGramsDistance) and g = 0.05, calculate ~w for maximizing R in the mapping (plane,
aeroplane, Equivalence, R)
Solution:

(1, 0, 0, 0)

So the optimum hybrid matcher for the equivalence of (plane, aeroplane) is:

1·GoogleDistance+0·BlockDistance+0·MatchingCoefficient+0·QGramsDistance,R = 0.555

Moreover, we can say that the worst vector is ~w = (0, 0.8, 0.15, 0.05) because it generates a R = 0.027

Property 3 (Monoticity). Let S be a set of matching algorithms, and let S’ be a superset of S. If MaSiMe
has a specific value for S, then the value for S’ is either equal to or greater than this value.

∀S′ ⊃ S,MaSiMes = x→MaSiMes′ ≥ x

Property 4. (Dependent completeness). If one of the algorithms belonging to the set of matching algo-
rithms provides a similarity of 1 and the chosen granularity is not a submultiple of 1, then the value of
MaSiMe is less than 1.

∃Ai ∈ ~A ∧ 1 /∈ ˙{g} ∧Ai(c1, c2) = 1→MaSiMe(c1, c2) < 1

Example 5. Let us suppose we have the same conditions as the Example 4, i.e., that we have: A = (Google
Similarity Distance, BlockDistance, MatchingCoefficient, QGramsDistance) but now g = 0.21. Calculate
~w for maximizing R in the mapping (plane, aeroplane, Equivalence, R)
Solution:

(0.84, 0, 0, 0)

So the optimum hybrid matcher for the equivalence for (plane, aeroplane) is not the same as that in
Example 4.

The reason is that if the granularity is not multiple of 1, the summation from the weight vector cannot
be 1, and therefore ~

A · ~w cannot be optimal.

8.2. Computing the Weight Vector

Once the problem is clear and the parameters ~A and g are known, it is neccesary to effectively com-
pute the weight vector. At this point, we leave the field of similarity measures to move into the field of
enginering.

It is possible to compute MaSiMe in several ways, for this work, we have designed a greedy mechanism
that seems to be effective and efficient. The next paragraphs discuss this mechanism.

8.2.1. Greedy Strategy.
A greedy strategy follows the problem solving heuristic of making the locally optimum choice at each

stage with the hope of finding the global optimum.
Let S the set of all the ontology matching algorithms

∃A ⊂ S, ∃g ∈ [0, 1] ∈ Q,∀i, j, k, ..., t ∈ ˙{g} → ∃~r, ri = ~A · (i, j − i, k − j, ..., 1− t)
with the followings restrictions j ≥ i ∧ k ≥ j ∧ 1 ≥ k

R = max (ri) ≤ 1

Martinez-Gil / University of Málaga 25

Where,

– g is the granularity
– (i, j − i, k − j, ..., 1− t) is the pattern for the weight vector
– ri are the partial results of the measure
– R is the maximum of the partial results, and therefore the value for MaSiMe

The algorithm can be suspended when it obtains a partial result equal to 1, because this is the maximum
value than we can hope for.

8.2.2. Complexity.
The strategy seems to be brute force, but it is not. Have into account that the input data size is

nlenght of ~A , but the computational complexity for the algorithm according to O notation is

O(nlenght of
~

A−1)

In this way, the total complexity (TC) for MaSiMe is:

TC(MaSiMeA) = O(max(max(O(Ai)), O(strategy)))

and therefore for MaSiMe using the greedy strategy

TC(MaSiMeA) = O(max(max(O(Ai), O(nlenght of A−1)))

Example 6. Given the set A = {Levhenstein, BlockDistance, MatchingCoefficient, QGrams-Distance} ,
the complexity for the matching process using MaSiMe is calculated.

TC(MaSiMeA) = O(max(O(n2), O(n3))) = O(n3)

8.3. Empirical evaluation

In this section, we test an implementation of MaSiMe. We have configured MaSiMe in the following
way: For the matching algorithms vector, we have chosen an arbitrary set of algorithms A = {Levhenstein
(22), Stolios (59), SIFO (60), Google (38) (39), Q-Gram (58) } and for granularity, g = 0.05. Moreover,
the threshold for relevant mappings is 0.9, i.e. all mappings with a probability greater than 0.9, will be
included in the output alignment.

Before testing MaSiMe over a standard benchmark, we show an example of mappings that MaSiMe has
been able to discover from ontologies (17) and (18). It is an arbirtrary example, but it gives us a good idea
of the Measure. We have compared it to two of the most outstanding tools for ontology alignment: FOAM
(16) and RiMOM (34).

We have used the default configuration for these tools, but not for MaSiMe, where the notion of config-
uration does not exist. Table 16 shows the results:

9. Genetic Strategy

Genetic Algorithms (GAs) are often used to search along very high dimensional problems spaces. For
example, if we want to find the maximum value of the function wsf with three independent variables x,
y and z:

wsf(O1, O2) = x · datatype(O1, O2) + y · normalization(O1, O2) + z · synonyms(O1, O2)

26 Martinez-Gil / University of Málaga

Russia1 Russia2 FOAM RiMOM MaSiMe
food food 1.00 0.50 1.00
drink drink 1.00 0.71 1.00

traveller normal_traveller 0 0 0.90
health_risk disease_type 0 0.17 0.17
time_unit time_unit 1.00 1.00 1.00
document document 1.00 0.99 1.00
approval certificate 0 0.21 0.96
payment means_of_payment 0 0.37 0.86

monetary_unit currency 0 0 0.19
inhabitant cititzen_of_russia 0 0.11 0.11

unit unit 1.00 1.00 1.00
adventure sport 0 0.01 0.10
building public_building 0.80 0.60 0.90

flight air_travel 0 ≈ 0 0.62
river_transfer cruise 0 0.21 0.21

railway train_travel 0 0.54 1.00
political_area political_region 0 0.40 0.84

Table 16
Comparison of several mappings from several tools

where x, y and z are weights to determine the importance of the three associated similarity measures,
which belong, for instance, to the continous interval [0, 1]. The problem that we want to solve is finding a
good value of x, y and z to find the largest possible value of wsf .

While this problem can be solved trivially by a brute force search over the range of the independent
variables x, y and z, the GA method scales very well to similar problems of a higher dimensionality; for
example, we might have functions using a large number of independent variables x, y, z,..., t. In this case,
an exhaustive search would be prohibitively expensive.

The methodology of the application of a GA requires defining the following strategies:

– Characterize the problem by enconding in a string of values the contents of a tentative solution.
– Provide a numeric fitness function that will allow to rate the relative quailty of each individual tenta-

tive solution in a population.

Out first task is to characterize the search space as some parameters. We need to encode several param-
eters in a single chromosome, so we have designed a method for converting a 10-bit representation to a
set of floating-point numbers in the arbitrary range [0, 1].

Later, we haved designed a fitness function to determine which chromosomes in the population are most
likely to survive and reproduce using genetic crossover and mutation operations.

For the returning of the fitness function, we can choose any parameter provided for the alignment
evalution process, thus, precision, recall, f-measure or fall-out. In this way, we are providing the possibility
to select one of these goals.

– Optimizing the precision
– Optimizing the recall
– Optimizing the f-measure
– Reducing the number of false positives

All of them are concepts used in Information Retrieval (62) for measuring the goodness of a retrieval
task. Precision is the percentage of items returned that are relevant. Recall is the fraction of the items that
are relevant to a query (in this case, to a matching task). F-measure is a weighted sum from precision and
recall. Finally, false positives are relationships which have been provided to the user although they are
false. In some domains, (for instance in Medicine) false positives are absolutely unwanted.

Martinez-Gil / University of Málaga 27

9.1. Preeliminary Study

We are going to do a preeliminary study of the parameters for the algorithm.

– For the number of genes per chromosome we have selected such values as 5, 10 and 20. A study using
a T-Test distribution have shown us that that the differences between samples are not statistically
significant. Therefore, we have selected 20 genes per chromosome.

– For the number of individuals in the population, we have selected such values as 20, 50 and 100.
Again, a T-Test stastistical distribution have shown that the differences between these samples are
not statistically significant. We have selected a population of 100 individuals.

– Related to crossover and mutation fraction, we have choosen a high value for the crossover between
genes and, a little percent for mutations, because we wish a classical configuration for the algorithm.

– After ten independent executions, we noticed that the genetic algorithm do not improve the results
beyond the fifth generation, so we have set a limit of five generations.

9.2. Main Experiment

Related to the conditions of the experiment, we have used:

– As similarity measure vector:
{Levhenstein(22), SIFO(60), Stolios(59), QGrams(58)}

– The GA has been configured having into account the following parameters11:

∗ 20 genes per chromosome
∗ A population of 100 individuals
∗ 0.98 for crossover fraction
∗ 0.05 for mutation fraction
∗ We allow 5 generations

– The platform characteristics: Intel Core 2 Duo, 2.33Ghz and 4GB RAM. The developing language
was Java.

10. Evaluation

The evaluation of a Meta-Matching strategy consists of the evaluation of its returned matching function.
There are several ways to evaluate an output alignment:

– Compliance measures provide some insight on the quality of identified alignments.
– Performance measures show how good the approach is in terms of computational resources.
– User-related measures help to determine the overall subjective user satisfaction, partially measured,

e.g., through user effort needed.
– There are task-related measures, which measure how good the alignment was for a certain use case

or application.

In practice, however, there is a degree of agreement to use some measures from the Information Re-
trieval field (61). These are: precision, recall, f-measure and fall-out.

Precision = {relevant mappings}∩{retrieved mappings}
{relevant mappings}

Recall = {relevant mappings}∩{retrieved mappings}
{retrieved mappings}

F −Measure = 2×precision×recall
precision+recall

11Fitness and search space have been explained in the previous section

28 Martinez-Gil / University of Málaga

Ontology Comment Precision Recall F-Meas. Fall-out
101 Reference alignment 1.00 1.00 1.00 0.00
102 Irrelevant ontology N/A N/A N/A N/A
103 Language generalization 1.00 1.00 1.00 0.00
104 Language restriction 1.00 1.00 1.00 0.00
201 No names 1.00 1.00 1.00 0.00
202 No names, no comments 1.00 1.00 1.00 0.00
203 Comments was missspelling 1.00 1.00 1.00 0.00
204 Naming conventions 1.00 0.91 0.95 0.00
205 Synonyms 1.00 0.19 0.33 0.00
206 Translation 1.00 0.19 0.33 0.00
221 No specialisation 1.00 1.00 1.00 0.00
222 Flatenned hierarchy 1.00 1.00 1.00 0.00
223 Expanded hierarchy 1.00 1.00 1.00 0.00
224 No instance 1.00 1.00 1.00 0.00
225 No restrictions 1.00 1.00 1.00 0.00
301 Real: BibTeX/MIT 0.93 0.23 0.37 0.06

Table 17
Behaviour of MaSiMe for the standard benchmark of the OAEI

Ontology Comment Precision Recall F-Meas. Fallout
101 Reference alignment 1.00 1.00 1.00 0.00
102 Irrelevant ontology N/A N/A N/A N/A
103 Language generalization 1.00 1.00 1.00 0.00
104 Language restriction 1.00 1.00 1.00 0.00
201 No names 1.00 1.00 1.00 0.00
202 No names, no comments 1.00 1.00 1.00 0.00
203 Comments was missspelling 1.00 1.00 1.00 0.00
204 Naming conventions 1.00 1.00 1.00 0.00
205 Synonyms 1.00 0.71 0.83 0.06
206 Translation 1.00 1.00 1.00 0.00
221 No specialisation 1.00 1.00 1.00 0.00
222 Flatenned hierarchy 1.00 1.00 1.00 0.00
223 Expanded hierarchy 1.00 1.00 1.00 0.00
224 No instance 1.00 1.00 1.00 0.00
225 No restrictions 1.00 1.00 1.00 0.00
301 Real: BibTeX/MIT 0.90 0.69 0.78 0.07

Table 18
Behaviour of the Genetic Algorithm for the standard benchmark of the OAEI

Fall − out = {non relevant mappings}∩{retr. mappings}
{non relevant mappings}

Table 17 shows the results we have obtained for the greedy strategy. Table 18 shows the results we have
obtained for the genetic strategy. Figure 12 shows a graphical comparative between the two strategies we
have used.

11. Related Work

If we look at literature, we can distinguish between individual ontology matching algorithms (i.e. FCA-
MERGE (63) or S-Match (64)) applying only a single method of matching items i.e. linguistic or tax-
onomical matchers and combinations of the former ones, which intend to overcome their limitations by
proposing hybrid and composite solutions. A hybrid approach follows a black box paradigm, in which

Martinez-Gil / University of Málaga 29

Fig. 12. Comparative results between strategies

Fig. 13. Comparison with other tools

various individual matchers are melt together to a new algorithm, while the so-called composite matchers
allow an increased user interaction (i.e. COMA++ (13), RIMOM (22), FALCON (65) and CtxMatch (66)).

The problem is that those kind of proposals use weights defined by an expert for configuring the match-
ers, but using our approaches involves to compute the weigths in an automatic way, so the process can be
more accurate and faster.

To avoid the human expert intervention, there are two research lines now; one for evaluating the results
of an alignment tool and maybe feedback the process (67) and another called Ontology Meta-Matching
(2) that tries to optimize automatically the parameters related to matching task. So, our approach could
be considered a mechanism for Meta-Matching. Most outstanding examples for this paradigm are: (i)
Based on Exhaustive search solutions, (ii) Based on Neural Networks solutions, and (iii) Based on Genetic
Algorithms solutions:

11.1. Based on Exhaustive Search Solutions

Ontology Meta-Matching can be solved trivially by an exhaustive search when the number of similarity
measures is low, the most oustanding approach in this sense is eTuner (54) that it is a system which,
given a particular matching task, automatically tunes an ontology matching system (computing one-to-one
alignments). For that purpose, it chooses the most effective basic matchers, and the best parameters to be
used.

However, exhaustive searches are very expensive, and unworkable when combining a great number of
measures, from a computational point of view. In this sense, most of solutions try to avoid this kind of
methods.

30 Martinez-Gil / University of Málaga

Precision Recall
GAOM 0.94 0.87
GOAL 0.99 0.96

Table 19
Comparison between GAOM and our proposal

11.2. Based on Machine Learning Solutions

Based on Machine Learning Meta-Matching techniques can be divided into two subtypes: Relevance
feedback (68) and Neural Networks (69):

– The idea behind relevance feedback (68) is to take the results that are initially returned from a given
query and to use information about whether or not those results are relevant to perform a new query:
APFEL (Alignment Process Feature Estimation and Learning) is a machine learning approach that
explores user validation of initial alignments for optimising automatically the configuration parame-
ters of some of the matching strategies of the system, e.g., weights, thresholds, for the given matching
task.

– Neural Networks (69) are non-linear statistical data modeling or decision making tools. They can
be used to model complex relationships between inputs and outputs or to find patterns in data. SFS
(70) It is a tool for ontology Meta-Matching that tries to obtain automatically a vector of weights for
different semantic aspects of a matching task, such as comparison of concept names, comparison of
concept properties, and comparison of concept relationships. To do that, it uses the neural networks
technique.

However, these kind of solutions implies spending much effort and time on training the systems in
relation to our two proposals.

11.3. Based on Genetic Algorithms Solutions

In relation to Based on Genetic Algorithm solutions, the most oustandig tool is GAOM which is a ge-
netic algorithm based approach for solving the ontology matching problem. For the purposes of better and
the more precise representation of ontology feature, it defines ontoly features from two aspects: intension-
al and extensional. On the other hand, ontology matching problem is modeled as a global optimization of
a mapping between two ontologies. Then a genetic algorithm is used to achieve an approximate optimal
solution.

Table 19 shows a comparative for the results for both GAOM and our proposal.
Although we follow the same paradigm, our proposal is slightly better in terms of numbers to GAOM

as the results shows.

12. Conclusions

We have presented ontology Meta-Matching, as a novel computational discipline for flexible and ac-
curate automatic ontology matching that generalizes and extends previous proposals for exploiting sim-
ple ontology matchers. We have presented the main techniques for ontology Meta-Matching. These tech-
niques take into account that it is not trivial to determine what the weights of the semantic aspects should
be and tries to avoid the research work depending a lot on human heuristics.

We provided an analysis of the most popular algorithms and techniques for simple matching, and char-
acterized their relative applicability as black boxes in a Meta-Matching enviroment. It is neccessary to
bear in mind that the success of the Meta-Matching depends largely on the kind of the underlying sim-
ples matchers used and the heterogeneity and soundness of the benchmarks for estimating, optimizing or
learning the parameters.

Martinez-Gil / University of Málaga 31

We showed the most promising tools in the area of Meta-Matching. Like techniques, tools can be
classified into heuristic or learning-based one. Such tools represent a serious effort to make the task of
ontology matching a more independent process from users, context, and even data involved.

The lessons learned on Ontology Meta-Matching will allow us to work with other kinds of conceptual
schemas for modelling knowledge (71). In this sense, we are convinced that Ontology Meta-Matching is a
perfect candidate to take users a step further the state-of-the-art in terms of interoperability in the Semantic
Web.

13. Acknowledgments

We thank anonymous reviewers for their very useful comments and suggestions. We thanks to Enrique
Alba his useful collaboration in the part related to Genetic Algorithms. This work has been partially
supported by the ICARO Project Grant, TIN2005-09098-C05-01 (Spanish Ministry of Education and
Science), and Applied Systems Biology Project, P07-TIC-02978 (From Consejeria de Innovacion, Ciencia
y Empresa belonging to the regiona goverment of Andalucia).

References

[1] Jorge Martinez-Gil: Thinking on the Web: Berners-Lee, Gödel and Turing. Comput. J. 50(3): 371-372 (2007).
[2] Jerome Euzenat, Pavel Shvaiko. Ontology Matching. Springer-Verlag, 2007.
[3] Philip A. Bernstein, Sergey Melnik: Meta Data Management. ICDE 2004: 875.
[4] Bin He, Kevin Chen-Chuan Chang: Making holistic schema matching robust: an ensemble approach. KDD 2005: 429-438.
[5] Marc Ehrig, York Sure: Ontology Mapping - An Integrated Approach. ESWS 2004: 76-91.
[6] Liliana Cabral, John Domingue, Enrico Motta, Terry R. Payne, Farshad Hakimpour: Approaches to Semantic Web Services:

an Overview and Comparisons. ESWS 2004: 225-239.
[7] A. Prasad Sistla, Clement T. Yu, R. Venkatasubrahmanian: Similarity Based Retrieval of Videos. ICDE 1997: 181-190.
[8] Christoph Kiefer, Abraham Bernstein, Markus Stocker: The Fundamentals of iSPARQL: A Virtual Triple Approach for

Similarity-Based Semantic Web Tasks. ISWC/ASWC 2007: 295-309.
[9] Jorge Martinez-Gil, Enrique Alba, Jose F. Aldana-Montes: Optimizing Ontology Alignments by Using Genetic Algorithms.

NatuReS 2008.
[10] Gonzalo Navarro: A guided tour to approximate string matching. ACM Comput. Surv. 33(1): 31-88 (2001).
[11] WordNet. http://wordnet.princeton.edu. Visit date: 11-march-2008.
[12] Patrick Ziegler, Christoph Kiefer, Christoph Sturm, Klaus R. Dittrich, Abraham Bernstein: Detecting Similarities in On-

tologies with the SOQA-SimPack Toolkit. EDBT 2006: 59-76.
[13] Hong Hai Do, Erhard Rahm: COMA - A System for Flexible Combination of Schema Matching Approaches. VLDB 2002:

610-621.
[14] David Aumueller, Hong Hai Do, Sabine Massmann, Erhard Rahm: Schema and ontology matching with COMA++. SIG-

MOD Conference 2005: 906-908.
[15] Christian Drumm, Matthias Schmitt, Hong Hai Do, Erhard Rahm: Quickmig: automatic schema matching for data migration

projects. CIKM 2007: 107-116.
[16] Marc Ehrig, York Sure: FOAM - Framework for Ontology Alignment and Mapping - Results of the Ontology Alignment

Evaluation Initiative. Integrating Ontologies 2005.
[17] Yannis Kalfoglou, W. Marco Schorlemmer: IF-Map: An Ontology-Mapping Method Based on Information-Flow Theory.

J. Data Semantics 1: 98-127 (2003).
[18] Haggai Roitman, Avigdor Gal: OntoBuilder: Fully Automatic Extraction and Consolidation of Ontologies from Web

Sources Using Sequence Semantics. EDBT Workshops 2006: 573-576.
[19] Jayant Madhavan, Philip A. Bernstein, Erhard Rahm: Generic Schema Matching with Cupid. VLDB 2001: 49-58.
[20] Kewei Tu, Yong Yu: CMC: Combining Multiple Schema-Matching Strategies Based on Credibility Prediction. DASFAA

2005: 888-893.
[21] Alexander Maedche, Boris Motik, Nuno Silva, Raphael Volz: MAFRA - A MApping FRAmework for Distributed Ontolo-

gies. EKAW 2002: 235-250.
[22] V. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Soviet Physics-Doklady, Vol. 10,

pages 707-710, August 1966.
[23] Ontology for describing an individual. http://daml.umbc.edu/ontologies/ittalks/person. Visit date: 28-jul-2008.
[24] Ontology that describe data from a person. http://www.cs.umd.edu/projects/plus/DAML/onts/ personal1.0.daml. Visit date:

28-jul-2008.
[25] Ontology Evaluation Initiative. http://oaei.ontologymatching.org. Visit date: 30-jul-2008.
[26] Marc Ehrig: Ontology Alignment: Bridging the Semantic Gap. (Contents) 2007, Springer, ISBN 978-0-387-36501-5.

32 Martinez-Gil / University of Málaga

[27] Marc Ehrig and York Sure. Ontology mapping - an integrated approach. In ChristophBussler, John Davis, Dieter Fensel,
and Rudi Studer(Eds.): Proceedings of the 1st ESWS, LCNS 3053, pages 76Ű91, Heraklion (GR), Springer-Verlag, 2004.

[28] Natalya Noy and Mark Musen. PROMPT: Algorithm and Tool for Automated Ontology Merging and Alignment. Proceed-
ings of AAAI-2000, pages 450Ű455, Austin (TX US). MIT Press/AAAI Press, 2000.

[29] Natalya Noy and Mark Musen. Anchor-prompt: using non-local context for semantic matching. In Proceedings of the
workshop on Ontologies and Information Sharing at the International Joint Conference on Artificial Intelligence (IJCAI),
pages 63-70, 2001.

[30] Anhai Doan, Jayant Madhavan, Robin Dhamankar, Pedro Domingos and, Alon Halevy. Learning to match ontologies on
the Semantic Web. The VLDB Journal, 12:303-319, 2003.

[31] Marc Ehrig and Steffen Staab. QOM - Quick Ontology Mapping. Proceedings of 3rd ISWC, Hiroshima (JP), pages 683-697,
Springer-Verlag, 2004.

[32] Ontology from Russia. http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/ontologies/russia1.owl. Last visit: 24-jul-2008.
[33] Ontology from Russia. http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/ontologies/russia2.owl. Last visit: 24-jul-2008.
[34] Yi Li, Juan-Zi Li, Duo Zhang, Jie Tang: Result of Ontology Alignment with RiMOM at OAEI’06. Ontology Matching

2006.
[35] Frank van Harmelen: Two Obvious Intuitions: Ontology-Mapping Needs Background Knowledge and Approximation. IAT

2006: 11.
[36] Fausto Giunchiglia, Pavel Shvaiko, Mikalai Yatskevich: Discovering Missing Background Knowledge in Ontology Match-

ing. ECAI 2006: 382-386.
[37] Ruben Vazquez, Nik Swoboda: Combining the Semantic Web with the Web as Background Knowledge for Ontology Map-

ping. OTM Conferences (1) 2007: 814-831.
[38] Rudi Cilibrasi, Paul M. B. Vitányi: The Google Similarity Distance. IEEE Trans. Knowl. Data Eng. 19(3): 370-383 (2007).
[39] Risto Gligorov, Warner ten Kate, Zharko Aleksovski, Frank van Harmelen: Using Google distance to weight approximate

ontology matches. WWW 2007: 767-776.
[40] Marco Ernandes, Giovanni Angelini, Marco Gori: WebCrow: A Web-Based System for Crossword Solving. AAAI 2005:

1412-1417.
[41] Bibliography vocabulary from Yale University. http://www.cs.yale.edu/ dvm/daml/bib-ont.daml. Visit date: 28-jul-2008.
[42] Bibliography vocabulary from IS Institute. http://www.isi.edu/webscripter/bibtex.o.daml. Visit date: 28-jul-2008.
[43] AKT Ontology. http://www.aktors.org/ontology/portal. Visit date: 28-jul-2008.
[44] Ontology for computer science academic departments. http://www.cs.umd.edu/projects/plus/DAML/onts/ cs1.0.daml. Visit

date: 28-jul-2008.
[45] Ontology about a subset of the GEDCOM data model. http://orlando.drc.com/daml/Ontology/Genealogy/ current/. Visit

date: 28-jul-2008.
[46] Ontology about the GEDCOM data model. http://www.daml.org/2001/01/gedcom/gedcom. Visit date: 28-jul-2008.
[47] Carmel Domshlak, Avigdor Gal, Haggai Roitman: Rank Aggregation for Automatic Schema Matching. IEEE Trans. Knowl.

Data Eng. 19(4): 538-553 (2007).
[48] Qiu Ji, Weiru Liu, Guilin Qi, David A. Bell: LCS: A Linguistic Combination System for Ontology Matching. KSEM 2006:

176-189.
[49] Stephanie Forrest: Genetic Algorithms. The Computer Science and Engineering Handbook 1997: 557-571.
[50] David Urdiales-Nieto, Jorge Martinez-Gil, Jose F. Aldana-Montes: MaSiMe: A Customized Similarity Measure and Its

Application for Tag Cloud Refactoring. OTM Workshops 2009: 937-946.
[51] J. Wang, Z. Ding, C. Jiang: GAOM: Genetic Algorithm based Ontology Matching. In Proceedings of APSCC, 2006.
[52] Gerard D. Cohen, Simon Litsyn, Gilles Zémor: On greedy algorithms in coding theory. IEEE Transactions on Information

Theory 42(6): 2053-2057 (1996).
[53] Yoon. Lee, Mayssam Sayyadian, AnHai Doan, Arnon Rosenthal: eTuner: tuning schema matching software using synthetic

scenarios. VLDB J. 16(1): 97-122 (2007).
[54] Pat Langley: Elements of Machine Learning. 1994, ISBN 1-55860-301-8.
[55] Marc Ehrig, Steffen Staab, York Sure: Bootstrapping Ontology Alignment Methods with APFEL. International Semantic

Web Conference 2005: 186-200.
[56] Michael I. Jordan, Christopher M. Bishop: Neural Networks. The Computer Science and Engineering Handbook 1997:

536-556.
[57] Jingshan Huang, Jiangbo Dang, José M. Vidal, and Michael N. Huhns. Ontology Matching Using an Artificial Neural

Network to Learn Weights. IJCAI Workshop on Semantic Web for Collaborative Knowledge Acquisition 2007.
[58] Esko Ukkonen: Approximate String Matching with q-grams and Maximal Matches. Theor. Comput. Sci. 92(1): 191-211

(1992).
[59] Giorgos Stoilos, Giorgos B. Stamou, Stefanos D. Kollias: A String Metric for Ontology Alignment. International Semantic

Web Conference 2005: 624-637
[60] Jorge Martinez-Gil, Ismael Navas-Delgado, Antonio Polo-Marquez, Jose F. Aldana-Montes: Comparison of Textual Ren-

derings of Ontologies for Improving Their Alignment. CISIS 2008: 871-876.
[61] Ricardo A. Baeza-Yates, Berthier A. Ribeiro-Neto: Modern Information Retrieval. ACM Press / Addison-Wesley 1999,

ISBN 0-201-39829-X.
[62] Michael K. Buckland, Fredric C. Gey: The Relationship between Recall and Precision. JASIS 45(1): 12-19 (1994).
[63] Gerd Stumme, Alexander Maedche: FCA-MERGE: Bottom-Up Merging of Ontologies. IJCAI 2001: 225-234.
[64] Fausto Giunchiglia, Pavel Shvaiko, Mikalai Yatskevich: S-Match: an Algorithm and an Implementation of Semantic Match-

ing. ESWS 2004: 61-75.
[65] Wei Hu, Gong Cheng, Dongdong Zheng, Xinyu Zhong, Yuzhong Qu: The Results of Falcon-AO in the OAEI 2006 Cam-

paign. Ontology Matching 2006.

Martinez-Gil / University of Málaga 33

[66] Slawomir Niedbala: OWL-CtxMatch in the OAEI 2006 Alignment Contest. Ontology Matching 2006.
[67] Patrick Lambrix, He Tan: A Tool for Evaluating Ontology Alignment Strategies. J. Data Semantics 8: 182-202 (2007).
[68] Gerard Salton, Chris Buckley: Improving retrieval performance by relevance feedback. JASIS 41(4):288-297 (1990).
[69] Alexandros Chortaras, Giorgos B. Stamou, Andreas Stafylopatis: Learning Ontology Alignments Using Recursive Neural

Networks. ICANN (2) 2005: 811-816.
[70] Jingshan Huang, Jiangbo Dang, José M. Vidal, and Michael N. Huhns. Ontology Matching Using an Artificial Neural

Network to Learn Weights. IJCAI Workshop on Semantic Web for Collaborative Knowledge Acquisition 2007.
[71] Malgorzata Mochol, Elena Paslaru Bontas Simperl: A High-Level Architecture of a Metadata-based Ontology Matching

Framework. DEXA Workshops 2006: 354-358.

