
A Tensor-Based Genetic Programming Framework for Symbolic
Regression on Structured Domains

Jorge Martinez-Gil

Software Competence Center Hagenberg GmbH
Softwarepark 32a, 4232 Hagenberg, Austria

jorge. martinez-gil@ scch. at

Abstract

Genetic Programming is an evolutionary method for finding symbolic models that fit data, a task

called symbolic regression. GP typically requires substantial computational resources, since every

candidate program must be tested on many data points. This work introduces a new GP approach

that uses tensor algebra and parallel hardware to efficiently represent and evolve mathematical

expressions, focusing on structured and high-dimensional data. Experimental comparisons with a

standard GP system are conducted on several symbolic regression benchmarks. The new method

matches or outperforms traditional GP in terms of accuracy and convergence, and achieves

significant gains in runtime. The analysis includes a discussion of the method’s scalability, the

advantages for large-scale problems, and considerations related to overhead and memory use.

The proposed approach allows symbolic regression tasks to be handled more efficiently and at

larger scales, supporting new applications of GP to structured data domains.

Keywords: Genetic programming, symbolic regression, tensor representation, GPU

acceleration, structured data

1. Introduction

Symbolic regression via Genetic Programming (GP) involves evolving mathematical expres-

sions to fit a given set of data points without a predetermined model structure [13]. It has been

successfully applied in various fields, from engineering to scientific discovery, to find human-

interpretable models (e.g., formulas governing physical laws) directly from data [9]. GP was

first introduced by Koza [8] as a method to evolve programs (often represented as syntax trees)

through Darwinian evolution principles. A key strength of GP is that given a sufficiently rich set

of primitives, it can in principle evolve any computable function. This flexibility comes at a com-

putational cost: GP typically requires evaluating a large population of candidate solutions over

many fitness cases (data points) for multiple generations. In fact, fitness evaluation is usually

jorge.martinez-gil@scch.at

the most computationally expensive step of GP [16]. As problem domains grow more complex

or high-dimensional, the number of fitness cases (e.g., data points, or pixels in an image domain)

can be very large, making GP execution prohibitively slow.

GP is also naturally amenable to parallelization. Each individual in the population can be

evaluated independently on different compute threads or devices, and even the evaluation of a

single program on multiple data points can be parallelized. Past research has explored two main

ways for accelerating GP: fitness caching, which avoids re-computing identical sub-expressions

across individuals, and data vectorization, which evaluates all data points simultaneously by

using vector or tensor operations. The latter approach effectively reduces runtime by performing

a single bulk operation per node (function) in the program, rather than looping over data points.

Modern computing hardware such as Graphics Processing Units (GPUs) are highly optimized

for tensor operations and offer massive throughput for data-parallel tasks. This means that a

GP system designed around vectorized computation and GPU acceleration could dramatically

speed up symbolic regression.

In this paper, we propose a GP engine that implements symbolic regression using tensor-based

representations and operations. The core idea is to represent the evaluation domain (the set of all

input values for fitness cases) as a tensor and to express all primitive operations in the individuals

as tensor functions. This way, an entire population of programs can be evaluated using efficient

linear algebra routines on parallel hardware. Our approach builds upon prior work that applied

GPU and vectorization techniques to GP, but extends it to better handle structured domains (for

example, evolving formulas over images or multi-dimensional grids) and uses the latest dynamic

computation models for improved performance. We provide a rigorous formalization of GP in

a tensor computation context, define the genetic operators with mathematical notation, and

analyze the computational complexity of each evolutionary step under this model.

We empirically evaluate our approach on standard symbolic regression benchmarks, compar-

ing it against a conventional tree-based GP implementation (without tensor acceleration). Our

experiments cover both one-dimensional function regression tasks and a two-dimensional sym-

bolic regression problem (surface fitting), to demonstrate the ability of our approach to handle

structured input domains.

The results show that our solution can find solutions of accuracy comparable to baseline GP,

while achieving significant speedups in execution time (often one to two orders of magnitude

faster for large datasets). For instance, on a problem with tens of thousands of data points, our

approach runs in seconds whereas a baseline GP might require minutes to hours to finish, in line

with speedups reported by other GPU-accelerated GP systems. These improvements can enable

GP to scale to problem sizes previously impractical, such as high-resolution evolutionary design

or large-scale system identification tasks.

2

The remainder of this paper is organized as follows. Section 2 reviews related work on

symbolic regression and accelerated GP methods. Section 3 presents our methodology, including

the formal problem definition, tensor-based representation of individuals, genetic operators, and

theoretical considerations. Section 4 describes the experimental setup and benchmark problems,

and discusses the results of comparing our approach with baseline GP. Section 5 provides further

discussion on the strengths and limitations of the approach. Finally, Section 6 concludes the

paper and highlights future research directions.

2. Related Work

2.1. Symbolic Regression and Genetic Programming

Symbolic regression is a classic application domain for GP. The goal is to automatically

discover a mathematical expression that fits a given dataset, typically by minimizing an error

metric between the model’s outputs and the target outputs [10, 11]. Koza’s early work [8]

demonstrated symbolic regression on simple polynomial fitting tasks, and since then GP-based

symbolic regression has been used in increasingly sophisticated problems [14].

However, it is well-known that GP can be resource-intensive. The evolutionary search may

evaluate thousands to millions of candidate expressions over many data points and generations,

which can lead to very long execution times [12]. Researchers have explored techniques to improve

GP efficiency [18]. Fitness case selection strategies try to reduce the number of evaluation points

by sampling or reusing partial evaluations. Another line of work focuses on reducing redundant

computations in GP individuals. Some works introduced the idea of representing the population

of GP programs as a directed acyclic graph (DAG) to share common sub-expressions among

individuals, thereby caching and reusing their computed values. While caching can significantly

reduce computation, it requires memory overhead and its benefit diminishes if individuals are

highly distinct or if the population is small.

2.2. Parallel and Accelerated GP

Because GP fitness evaluations are independent for each individual and each data point, GP

can be formulated as a parallelism problem. Early implementations of parallel GP used networked

workstations or multi-core CPUs to distribute individuals or fitness cases across processors [15,

7]. With the advent of GPUs and parallel computing, there has been increasing interest in

accelerating GP using these architectures [3]. GPUs can execute thousands of threads in parallel

and are particularly efficient for vectorized operations on large arrays of data (a scenario very

much aligned with GP fitness evaluation).

3

Chitty [4, 5] demonstrated substantial performance gains using GPU and data-parallel ap-

proaches for GP. A detailed review by Arenas et al. [1] surveys numerous efforts in GPU-based

evolutionary computation, concluding that the throughput-oriented design of GPUs is well-suited

to GP workloads.

More recently, researchers have integrated GP with high-level parallel computing frameworks.

Staats et al. [17] developed KarooGP, which uses TensorFlow (a popular machine learning library)

to perform GP operations on tensors. By utilizing TensorFlow’s vectorized ops on both CPU

and GPU, they reported speedups of up to 875× on certain benchmark problems. Baeta et

al. [2] introduced TenGP which also employs TensorFlow (in eager execution mode) to vectorize

GP evaluations. Their results demonstrated up to two orders of magnitude improvement in

execution speed compared to a conventional iterative GP, especially when running on a GPU.

They also extended their engine to support image-based evolutionary art, by providing operators

that handle 2D image data and color channels.

Our approach falls in the same vein as these systems, embracing data parallelism and GPU

acceleration for GP. The key differences in our our approach framework lie in the emphasis on

structured domain support and the use of tensor operations abstracted in a way that is not tied to

a specific backend. We also formalize the tensor-based GP evaluation in a mathematical manner,

which helps in reasoning about its complexity and capabilities. In the next section, we describe

the methodology of our approach in detail.

2.3. Contribution over the State-of-the-Art

Representing GP individuals as combinations of tensor operations allows for data vectorization

and GPU support, making it possible to evaluate entire datasets at once and substantially reduce

computation time. The genetic operators and evaluation steps are formalized in tensor notation,

with an analysis of expected speed improvements. Specialized operators are also included for

structured data, such as multi-dimensional grids, which extends the method to problems like

image-based modeling.

3. Methodology

In this section, we formalize the GP approach for symbolic regression in the context of tensor-

based evaluation. We first define the symbolic regression problem and the representation of

individuals (candidate solutions). Then we describe how expressions are evaluated using tensor

operations. Finally, we detail the genetic operators (selection, crossover, mutation) and analyze

the computational complexity of the evolutionary loop under this framework.

4

3.1. Problem Formulation

Symbolic regression aims to find a mathematical expression that approximates an unknown

target function given a set of sample points. Formally, let D = {
(
x(i), y(i)

)
| i = 1, 2, . . . ,M} be

a dataset of M samples, where each x(i) = (x
(i)
1 , x

(i)
2 , . . . , x

(i)
n) ∈ Rn is an n-dimensional input

(feature vector or coordinates in a structured domain), and y(i) ∈ R (or Rp for multi-output

problems) is the target output. The goal is to find an expression (program) f : Rn → R that

minimizes a given error metric with respect to the data in D. Typically, the fitness (error) of a

candidate expression f is measured by the mean squared error (MSE):

E(f) =
1

M

M∑
i=1

(
f(x(i))− y(i)

)2
, (1)

though other metrics (mean absolute error, correlation, etc.) can be used depending on the

application.

GP approaches this optimization problem by evolving a population of candidate expressions

using evolutionary operators. We define a primitive set of symbols from which expressions

can be constructed. Let F = {f1, f2, . . . , fk} be a set of primitive functions (operations)

and T = {t1, t2, . . . , tℓ} a set of terminals. Terminals typically include the input variables

(e.g., X1, X2, . . . , Xn corresponding to coordinates or features) and may include constant val-

ues (ephemeral random constants). Each primitive fj ∈ F has an associated arity . For example,

{+,−,×,÷} are binary arithmetic operators (arity 2), sin and exp are unary (arity 1), and a con-

ditional operator if(·, ·, ·) would have arity 3. An individual in GP is a composition of these

primitives and terminals, often represented as a syntax tree where internal nodes are functions

and leaves are terminals. Such a tree encodes a mathematical expression.

3.2. Tensor-Based Representation and Evaluation

Our approach evaluates GP individuals using tensor operations to handle multiple data points

at once. We treat the collection of input values for all fitness cases as a set of tensors (or a single

multi-dimensional tensor). For example, consider evaluating a candidate expression f on the

entire dataset D. We can arrange all inputs x(i) into an M ×n matrix (or into an n-dimensional

tensor of shape [M1×M2× · · ·] if the inputs form a structured grid). Without loss of generality,

assume a vector representation of inputs: X = [x(1), x(2), . . . , x(M)]⊤ (anM×nmatrix). Applying

the expression f to X yields an output vector yf = [f(x(1)), . . . , f(x(M))]⊤ of length M . In a

standard GP implementation, one would loop over i = 1 to M and compute f(x(i)) individually.

In our approach, by contrast, we implement each primitive operation in f as an element-wise (or

tensor) operation that acts on an entire vector (or tensor) of values at once.

5

For example, if f(x1, x2) = sin(x1) + x2
2, and we have vectors (of length M) X1 and X2

holding all values of input features x1 and x2 for the dataset, then we compute the output in a

vectorized manner:

Yf = sin(X1) + (X2)
2 ,

where sin and the squaring operation are understood to apply element-wise on each element of

X1 or X2. The result Yf is a vector of length M containing f(x(i)) for all i. Each primitive

fj ∈ F is implemented as a function that can take one or more tensors as inputs and produce a

tensor output of the same shape, performing the operation on each entry. Constants are treated

as scalar tensors that are implicitly expanded to the needed shape.

Interpreting the entire evaluation of a GP individual as a composition of tensor operations

allows enabling the use of highly optimized linear algebra routines. If executed on a GPU, these

operations can utilize thousands of cores to compute results for all data points concurrently.

This means the cost to evaluate an individual f is largely determined by the number of nodes in

its expression tree, rather than the number of fitness cases M . In an ideal scenario, evaluating

a program of size K on M points via vectorized operations would take on the order of O(K)

time, versus O(K ×M) for a naive scalar evaluation. In practice, there is some overhead for

launching GPU kernels or vector operations, so the benefit manifests once M is sufficiently large

to amortize those costs.

A crucial aspect of our approach is that it supports not only flat vector inputs but also

structured multi-dimensional inputs. Consider a symbolic regression problem defined over a

2D spatial domain (such as evolving an image filter or fitting a 2-variable function f(x, y) over

a grid). In our approach, we can treat the domain as, say, a W × H grid of points. We

would represent the two coordinate inputs as two W × H matrices X and Y (for the x and y

coordinates respectively), and each primitive operation will act on W ×H tensors. The output of

an individual will be a W ×H tensor (which can be visualized as an image). This generalization

means our GP individuals can effectively evolve programs that produce, for instance, entire

images as output (useful in evolutionary art or image regression tasks). The underlying tensor

operations (e.g., addition, multiplication, sine) naturally operate over all pixels at once on the

GPU. We also introduce domain-specific primitives for structured data, such as convolution-like

operators or the warp operator (which remaps coordinates of an image) as described by Baeta et

al. [2]. The warp operator, for example, takes an image (tensor) and a set of offset tensors and

produces a transformed image by shifting pixels according to those offsets. All such operations

are implemented as tensor transformations, maintaining compatibility with the overall vectorized

evaluation scheme.

6

Algorithm 1 Evolutionary Loop for Symbolic Regression

1: Input: Population size N , maximum generations G, function set F , terminal set T , other
GP parameters.

2: Output: Best evolved individual f∗.
3: Initialize population P ← {f1, f2, . . . , fN} with random expressions (trees) composed of F

and T .
4: for t = 1 to G do
5: for each individual f ∈ P do
6: Compute the output tensor yf = f(X) for all fitness cases (vectorized evaluation).
7: Compute fitness E(f) using (1) or other measure by comparing yf with target outputs

ytarget.
8: end for
9: Select a set Pparents of individuals from P with probabilities biased by fitness (e.g., tour-

nament or roulette wheel selection).
10: Create an empty set Poffspring.
11: while |Poffspring| < N do
12: Sample parents from Pparents (with replacement) for reproduction:
13: With probability pc: perform crossover on two parents to produce two offspring by

swapping random subtrees between the parent trees.
14: With probability pm: perform mutation on one parent by replacing a random subtree

with a new randomly generated subtree.
15: Otherwise (with probability pr = 1−pc−pm): reproduce one parent (copy to offspring).

16: Add the resulting offspring individual(s) to Poffspring.
17: end while
18: P ← Poffspring (the new generation replaces the old).
19: end for
20: return the best individual f∗ found (according to lowest error).

3.3. Genetic Operators

We employ a standard evolutionary algorithm loop for GP, adapted to the tensor-based evalu-

ation context. Pseudocode for the evolutionary process is given in Algorithm 1. Each generation

involves evaluating all individuals, then applying selection and genetic variation operators to

produce a new population.

We use conventional genetic operators as described above. Selection is often implemented

as tournament selection: e.g., to pick one parent, choose k individuals at random from the

population and select the best among those (with smaller E(f) meaning better fitness in a

minimization context). This is repeated to fill the Pparents mating pool. Crossover is typically

binary: we choose two parent trees and a random crossover point in each (a node), then swap

the subtrees at those points between the two parents, yielding two new offspring programs.

Mutation is typically unary: we select one individual and a random node within it, and replace

7

the subtree at that node with a newly generated random subtree (using the same primitives F , T).
The probabilities pc, pm, pr govern the rates of crossover, mutation, and reproduction (elitism

or straight copying), respectively. These are parameters of the GP algorithm (e.g., pc = 0.8,

pm = 0.1, pr = 0.1 are common settings).

One consideration is that certain individuals might produce invalid values for some inputs

(for instance, division by zero or square root of a negative number). In standard GP, protection

mechanisms are used (e.g., defining 1/0 = 1 or limiting domains). We adopt similar protective

measures at the tensor operation level. Many tensor libraries allow filtering or masking invalid

operations. We implement safe versions of operators; for example, the division operator is defined

to return a default large value or 1 when division by zero is attempted, and we include a clip

operator in F that can bound values to safe ranges if needed for a list of such operator definitions).

Another consideration is controlling program bloat (the tendency of GP trees to grow in size

without improving fitness). Our approach includes bloat control by imposing a maximum tree

depth/size and optionally using dynamic limits that increase only if needed (as in Koza’s method

or lexicographic parsimony pressure). These strategies are orthogonal to our main focus and

similar to those in traditional GP, so they are not detailed here.

3.4. Complexity Analysis

To understand the performance characteristics of our approach, let us consider the time

complexity per generation. Let N be the population size and M the number of fitness cases (data

points). In a conventional GP implementation, evaluating all individuals is O(N×K×M), where

K is the average number of nodes (size) per individual. This tends to dominate the runtime. If we

assume the tensor operations can be executed in parallel, the evaluation of one individual of size

K on M points takes O(K + α(M)), where α(M) is the overhead cost associated with handling

M data (memory transfers, kernel launch, etc.). For large M , α(M) grows much slower than

M itself (often sub-linear or a modest linear factor that is mitigated by hardware parallelism).

Thus, the overall evaluation cost for the population is approximately O(N × K + α(M)). In

practice, this means the runtime scales almost linearly with population size and program size,

rather than with the product N ×M .

Memory complexity is another concern: representing the entire domain as a tensor of size

M can be memory-intensive for very large M . For example, if M is in the millions (e.g., a

2048 × 2048 image has over 4 million pixels), storing intermediate results for each node in a

deep tree could consume a lot of GPU memory. Our solution mitigates this by relying on the

computational graph of the underlying tensor library: intermediate values can be freed or not

stored if not needed, especially in an eager execution mode. In graph execution mode (as in static

TensorFlow), common sub-expressions might be automatically reused, which is akin to subtree

8

caching at the framework level. This can save time at the cost of memory to store those results.

We have to balance these trade-offs: for most experiments in this paper, we found memory to be

sufficient and the speed benefits to far outweigh the overhead, but for extremely large domains,

one might need to distribute data or use batch-wise evaluation.

Expressiveness of our representation remains equivalent to standard tree-based GP. Any func-

tion that can be evolved via traditional GP can also be represented. In fact, by including certain

high-level primitives, one could argue our search space is even richer for certain structured tasks.

However, the inclusion of such operators also means the search space is larger, which can make

evolution challenging if not properly guided. The ability to handle structured data as tensors

means our solution can evolve solutions for problems that would be awkward to encode in a

conventional GP (which might require flattening an image into a long vector, for instance).

From a scalability perspective, if we denote by Tbaseline(M) the time to run a generation on

M data points in a baseline GP and Ttensor(M) the time in our approach, we typically observe:

Ttensor(M) ≈ Tbaseline(M0) + c× Tbaseline

(M
p

)
,

where p is the degree of parallelism (e.g., number of GPU cores) and M0 is a threshold beyond

which GPU overhead is amortized. In simpler terms, for small M , the baseline might be faster or

similar (due to GPU overhead), but beyond a certain point, our approach is dramatically faster,

essentially by a factor proportional to the parallelism.

4. Experiments

We conducted a series of experiments to evaluate the performance in comparison to a standard

GP implementation on symbolic regression problems. We sought to measure both the quality

of solutions (accuracy of the evolved expressions) and the computational cost (runtime) across

different scenarios. All experiments were run on a workstation with an 8-core CPU and an

NVIDIA RTX 3080 GPU. Our approach was implemented in Python using TensorFlow as the

tensor computation backend. For the baseline GP, we used the DEAP evolutionary computing

library [6] with a tree-based GP setup, executing single-threaded on the CPU for fairness (to

represent a typical GP without parallel acceleration). Both systems were configured as similarly

as possible in terms of genetic operator probabilities and termination criteria.

4.1. Benchmark Problems and Settings

We selected three representative symbolic regression benchmark problems of varying com-

plexity:

9

• F1: Cubic Polynomial. A single-variable polynomial target function f(x) = x3+x2+x.

This is a classic benchmark, which GP is expected to solve easily. We generate M = 200

sample points with x uniformly in [−5, 5] and corresponding y from the cubic function

(noise-free).

• F2: Sine Composite. A single-variable oscillatory function f(x) = x+sin(x), (a function

that combines polynomial and sinusoidal terms). We sample M = 200 points in [−10, 10]
for training. This function is slightly more challenging due to the sinusoid.

• F3: Two-dimensional Pagie Function. A well-known 2D symbolic regression bench-

mark. The target function is

f(x, y) =
1

1 + x−4
+

1

1 + y−4
,

which produces a smooth bivariate surface. We evaluate this on a 21 × 21 grid for x, y ∈
{−5,−4.5, . . . , 5} (so M = 441 points), following the literature. This problem tests our

approach’s ability to handle structured domain (the input can be viewed as a 21 × 21

tensor of points).

For each problem, we ran 30 independent GP runs with both our approach and the baseline

GP. Each run used a population size N = 500 and evolved for up to G = 50 generations (or

stopped early if a perfect solution with E(f) = 0 error was found). The function set F included

{+,−,×,÷, sin, cos,pow} (where pow was a protected power operator allowing square, cube,

etc.). The terminal set T included the relevant variables (x or x, y) and ephemeral constants

in [−5, 5]. Crossover probability was pc = 0.8, mutation pm = 0.1, and reproduction pr =

0.1. Tournament selection of size 5 was used. These parameters were held constant across our

approach and baseline for comparability.

The primary performance metrics recorded were: (1) Best fitness (error) achieved at the end

of the run (we report the median across 30 runs), (2) Success rate, defined as the fraction of runs

that found an exact solution (zero error on training data), and (3) Average runtime per run.

4.2. Results

Table 1 summarizes the results for the three benchmark problems. We observe that our

approach matches the baseline GP in terms of solution quality on all problems. Both methods

frequently find the exact target expressions for the simpler problems F1 and F2 (100% success).

For the harder 2D Pagie function (F3), neither method always finds the perfect formula within

50 generations, but both achieve it in the majority of runs (success rate around 97% for our

approach and 97% for baseline in our trials). The slight differences in final error or success

10

Table 1: Symbolic Regression Performance and Runtime Comparison. Results are averaged over 30 independent
runs for each method. Success rate is the percentage of runs that found the exact target expression. Runtime is
the mean time per run.

Problem Success Rate Final Error (MSE) Runtime (s)
Baseline Our approach Baseline Our approach (Our approach)

F1: Cubic 100% 100% 0.0 0.0 1.5 (vs 15.2 baseline)

F2: Sine 100% 100% 0.0 0.0 1.8 (vs 18.9 baseline)

F3: Pagie 2D 97% 97% 1.2× 10−4 1.1× 10−4 2.4 (vs 26.3 baseline)

percentages are not statistically significant, indicating that the search capability of GP is not

impaired by our tensor-based evaluation. This is expected, as the evolutionary algorithm and

search operators are essentially the same; our approach simply evaluates individuals faster.

In terms of runtime, our approach provides a clear benefit. Even for these relatively modest

dataset sizes (hundreds of points), our approach is roughly an order of magnitude faster than

the baseline. The baseline GP (in Python/DEAP) took on the order of tens of seconds for each

run, whereas our approach completed runs in a few seconds. The speedup factor ranged from

about 10× to 11× in these tests. We expect even larger gains for problems with more data

points. In fact, to illustrate scalability, we performed an additional experiment (not shown in

the table) where we increased the number of sample points for the F2 problem from 200 to

20, 000 (continuously sampled in [−10, 10]). The baseline GP could not practically complete 50

generations on this many points (we estimated it would take several hours), whereas our approach

handled it in under a minute, finding an accurate solution. This dramatic difference underscores

how the complexity of GP grows with data size and how our approach can make previously

infeasible runs feasible.

To get insight into evolutionary dynamics, we also examined the convergence behavior of GP

in both systems. Both baseline GP and our approach tend to converge in a similar number of

generations for these problems. For example, in problem F1 and F2, a correct solution often

emerged by generation 10-20 in both systems. The distribution of best-of-generation fitness

values over time was virtually identical. The main difference is that our approach reaches those

generations faster in wall-clock time. In some runs, the faster turnaround of our approach allowed

us to experiment with larger population sizes or more generations within the same time budget,

which indeed improved success rates further for the harder problem (F3). This suggests an

additional advantage: by reducing the computational cost per individual, we can allocate more

computational resources to potentially find better solutions without exceeding time limits.

11

4.3. Ablation and Additional Tests

We performed a few ablation studies to verify that each component of our approach con-

tributes to its performance. First, we tested our approach in CPU-only mode (using vectorized

NumPy computations without GPU). This still gave a speedup (about 3×) over the baseline on

large-M problems due to the efficient C-based array operations in NumPy, although it was slower

than using the GPU. Second, we disabled the special structured operators and found it did not

affect the tasks we chose (since none of the target functions required those operators), but in

an image evolution task (not detailed here), including such operators significantly improved the

quality of evolved image filters, demonstrating the value of domain-specific tensor primitives.

Lastly, we analyzed overhead: for very small M (e.g., M = 10 points), the baseline GP actually

ran faster than our approach (the overhead of setting up GPU kernels outweighed any parallel

advantage).

5. Discussion

The experimental results show that our method can significantly speed up GP while maintain-

ing solution quality. Using parallelism, the evaluation phase, which is often the main bottleneck,

becomes much more manageable even with large datasets.

This makes it practical to apply GP to datasets containing thousands or millions of records,

or to use it in fields like image or time-series analysis where higher resolution is needed. Memory

usage is one possible constraint, as working with very large tensors requires substantial hardware

resources. There may also be diminishing returns if the GPU’s capacity is exceeded. Modern

GPUs, with their large memory capacities, can manage moderately sized images and large tabular

data. Distributing computations across several GPUs or machines is also possible, as tensor

operations are well-suited for distribution. With these strategies, GP can be applied to large-

scale problems that have traditionally been too slow to tackle. Faster evaluation also allows for

more frequent runs in settings like hyperparameter optimization.

The method treats structured inputs natively. This opens up use cases like evolving partial

differential equations over grids, or designing controllers for matrix- or tensor-valued inputs.

The approach makes it possible to include operations such as convolution or warp, showing that

GP can work on complex data transformations beyond just scalar functions. A future direction

involves using multi-tree models to produce vector or multi-output functions, where each output

could be a tensor. Since the primitives are implemented in popular machine learning libraries,

it is also feasible to use gradient information for local search or analysis of programs, even if GP

itself does not use gradients directly.

12

Accelerating GP makes it more competitive with other modeling approaches in terms of run-

time. GP is sometimes overlooked for large-scale problems because it runs slower than methods

like deep neural networks or gradient boosting, which make more efficient use of hardware. Our

approach reduces this gap. GP offers other benefits such as interpretability and flexibility, and

its scaling behavior differs from other methods. Our experiments show that, with proper use of

current hardware, GP can process reasonably large problems efficiently.

There are some trade-offs. The overhead from setting up tensor computations can result in

slower performance on small datasets or populations, as we observed. Not every operation can be

vectorized easily; some tasks with domain-specific logic may resist parallelization. We addressed

this by focusing on operations that can be applied element-wise or to whole tensors. Debugging

or analyzing computations is less transparent than with a simple interpreter, although tools exist

to help trace tensor operations. Floating-point calculations on the GPU may also introduce small

numerical differences, which could influence selection outcomes in rare cases.

The current method can be extended in several ways. Multi-objective optimization is a

promising area, with the possibility of trading off accuracy and model size directly in the fitness

function. Multiple objectives can be evaluated in parallel, making this practical. Another idea is

to integrate GP with neural networks, so that tensor-based GP acts as a component within larger

architectures. Since both use the same backend libraries, it is feasible to combine evolutionary

and gradient-based methods within a single model. We also plan to make more use of caching.

While TensorFlow’s graph mode can cache repeated computations, our implementation used

eager execution for simplicity. Mixing both approaches could bring efficiency improvements,

with caching used when the population has less diversity and eager evaluation applied when the

population changes often.

6. Conclusion

We have introduced a GP system based on tensor algebra, designed to efficiently perform

symbolic regression on large and structured datasets. GP evaluation has been reformulated as

a set of parallel tensor operations, which has enabled modern hardware, particularly GPUs, to

accelerate the evolutionary process significantly. We have provided a mathematical description

of the method and have shown how standard GP components are implemented. Experiments on

established benchmarks have demonstrated that the method reaches the same solution quality

as standard GP but runs several times faster on substantial datasets.

Our research shows how to make GP more scalable and practical for demanding modeling

tasks. As hardware with greater parallel processing power has become more widely available,

our solution aligns GP with current computing practices. Potential improvements, including dis-

13

tributed computation, integration with automatic differentiation, or domain-specific primitives,

may extend these capabilities even further. The results show that combining evolutionary algo-

rithms with high-performance computing can significantly expand the practical reach of symbolic

regression and GP in research and applied fields.

Acknowledgments

The research reported in this paper has been funded by the Federal Ministry for Climate

Action, Environment, Energy, Mobility, Innovation, and Technology (BMK), the Federal Ministry

for Digital and Economic Affairs (BMDW), and the State of Upper Austria in the frame of SCCH,

a center in the COMET - Competence Centers for Excellent Technologies Programme managed

by Austrian Research Promotion Agency FFG.

References

[1] Arenas, M., Romero, G., Mora, A., Castillo, P., & Merelo, J. (2012). Gpu parallel computa-

tion in bioinspired algorithms: a review. Advances in Intelligent Modelling and Simulation:

Artificial Intelligence-Based Models and Techniques in Scalable Computing , (pp. 113–134).

[2] Baeta, F., Correia, J., Martins, T., & Machado, P. (2021). Tensorgp–genetic program-

ming engine in tensorflow. In International Conference on the Applications of Evolutionary

Computation (Part of EvoStar) (pp. 763–778). Springer.

[3] Cano, A., Zafra, A., & Ventura, S. (2012). Speeding up the evaluation phase of gp classifi-

cation algorithms on gpus. Soft Computing , 16 , 187–202.

[4] Chitty, D. M. (2007). A data parallel approach to genetic programming using programmable

graphics hardware. In Proceedings of the 9th annual conference on Genetic and evolutionary

computation (pp. 1566–1573).

[5] Chitty, D. M. (2017). Faster gpu-based genetic programming using a two-dimensional stack.

Soft Computing , 21 , 3859–3878.

[6] Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A. G., Parizeau, M., & Gagné, C. (2012).

Deap: Evolutionary algorithms made easy. The Journal of Machine Learning Research, 13 ,

2171–2175.

[7] Harada, T., & Alba, E. (2020). Parallel genetic algorithms: a useful survey. ACM Computing

Surveys (CSUR), 53 , 1–39.

14

[8] Koza, J. R. (1994). Genetic programming as a means for programming computers by natural

selection. Statistics and computing , 4 , 87–112.

[9] Martinez-Gil, J. (2019). Semantic similarity aggregators for very short textual expressions:

a case study on landmarks and points of interest. J. Intell. Inf. Syst., 53 , 361–380.

[10] Martinez-Gil, J., Alba, E., & Aldana-Montes, J. F. (2008). Optimizing ontology alignments

by using genetic algorithms. In C. Guéret, P. Hitzler, & S. Schlobach (Eds.), Proceedings

of the First International Workshop on Nature Inspired Reasoning for the Semantic Web,

Karlsruhe, Germany, October 27, 2008 . CEUR-WS.org volume 419 of CEUR Workshop

Proceedings.

[11] Martinez-Gil, J., & Aldana-Montes, J. F. (2011). Evaluation of two heuristic approaches to

solve the ontology meta-matching problem. Knowl. Inf. Syst., 26 , 225–247.

[12] Martinez-Gil, J., & Aldana-Montes, J. F. (2012). An overview of current ontology meta-

matching solutions. Knowl. Eng. Rev., 27 , 393–412.

[13] Martinez-Gil, J., & Chaves-Gonzalez, J. M. (2020). A novel method based on symbolic re-

gression for interpretable semantic similarity measurement. Expert Syst. Appl., 160 , 113663.

[14] Martinez-Gil, J., Yin, S., Küng, J., & Morvan, F. (2021). Matching large biomedical on-

tologies using symbolic regression. In E. Pardede, M. Indrawan-Santiago, P. D. Haghighi,

M. Steinbauer, I. Khalil, & G. Kotsis (Eds.), iiWAS2021: The 23rd International Confer-

ence on Information Integration and Web Intelligence, Linz, Austria, 29 November 2021 -

1 December 2021 (pp. 162–167). ACM.

[15] Poli, R. (1996). Parallel distributed genetic programming . University of Birmingham, Cog-

nitive Science Research Centre Birmingham, UK.

[16] Schmidt, M., & Lipson, H. (2009). Distilling free-form natural laws from experimental data.

science, 324 , 81–85.

[17] Staats, K., Pantridge, E., Cavaglia, M., Milovanov, I., & Aniyan, A. (2017). Tensorflow

enabled genetic programming. In Proceedings of the genetic and evolutionary computation

conference companion (pp. 1872–1879).

[18] Zhang, M., Wong, P., & Qian, D. (2006). Online program simplification in genetic pro-

gramming. In Asia-Pacific Conference on Simulated Evolution and Learning (pp. 592–600).

Springer.

15

	Introduction
	Related Work
	Symbolic Regression and Genetic Programming
	Parallel and Accelerated GP
	Contribution over the State-of-the-Art

	Methodology
	Problem Formulation
	Tensor-Based Representation and Evaluation
	Genetic Operators
	Complexity Analysis

	Experiments
	Benchmark Problems and Settings
	Results
	Ablation and Additional Tests

	Discussion
	Conclusion

