
Source Code Clone Detection Using
Unsupervised Similarity Measures

Jorge Martinez-Gil

Software Competence Center Hagenberg GmbH
Softwarepark 32a, 4232 Hagenberg, Austria,

jorge.martinez-gil@scch.at

Abstract. Assessing similarity in source code has gained significant at-
tention in recent years due to its importance in software engineering tasks
such as clone detection and code search and recommendation. This work
presents a comparative analysis of unsupervised similarity measures for
identifying source code clone detection. The goal is to overview the cur-
rent state-of-the-art techniques, their strengths, and weaknesses. To do
that, we compile the existing unsupervised strategies and evaluate their
performance on a benchmark dataset to guide software engineers in se-
lecting appropriate methods for their specific use cases. The source code
of this study is available at https://github.com/jorge-martinez-gil/
codesim

Key words: Software Engineering, Clone Detection, Similarity Mea-
sures, Code Similarity

1 Introduction

Source code clone detection holds increasing importance in the current software
engineering landscape, and its significance is likely to grow even further [1]. The
reason is that this approach is crucial in software development since it can help
address various problems during software maintenance [18]. Clones are duplicate
or similar pieces of code within a software project. Therefore, consider the chaotic
situation that would happen if a bug is fixed or a change is made to a piece of
code but not to its duplicates. To avoid such situations, developers should have
tools to automatically evaluate the likeness between code fragments based on
various aspects of their form and functionality [37, 36].

In this work, we address this challenge from the point of view of using sim-
ilarity measures. When working with general and source code similarity, it is
necessary to distinguish between supervised and unsupervised approaches [26].
On the one hand, supervised approaches require a training set of pairs of code
fragments labeled as similar or dissimilar, which is often difficult to get, at least in
terms of the necessary volume [?]. On the other hand, unsupervised approaches
do not require a training set, and they can be used to measure the similarity
of any two code fragments with no prior knowledge and a low consumption of
computational resources [30].

https://orcid.org/0000-0002-5730-7965
jorge.martinez-gil@scch.at
https://github.com/jorge-martinez-gil/codesim
https://github.com/jorge-martinez-gil/codesim


2 Jorge Martinez-Gil

This work evaluates at least one representative implementation of unsuper-
vised similarity measures. This analysis is based on their underlying principles.
In this regard, we explore measures ranging from trivial strategies for token
comparison to the more advanced comparison of embeddings [34]. To facilitate
a thorough assessment, we use a benchmark dataset comprising diverse code
fragments with varying degrees of similarity and check the performance of each
similarity measure across the dataset.

Our analysis focuses on shedding light on practical applicability and scala-
bility. The rationale behind summarizing the existing body of knowledge and
identifying research gaps is to offer a resource for software engineers interested
in unsupervised measures for detecting source code clones. Furthermore, in con-
trast to recent works, which address the challenge from a purely qualitative
perspective, our work aims at a quantitative analysis.

Therefore, this work’s primary and overall contribution aims to guide the
choice of appropriate unsupervised similarity measures for clone detection. Ad-
ditionally, it identifies promising directions for future research in source code
similarity assessment. The following specific contributions achieve this:

– We present the fundamental challenge regarding clone detection and the pos-
sibility of building solutions to cope with the absence of labeled data and
different coding styles.

– We compile an extensive collection of unsupervised semantic similarity mea-
sures being able to compare textual information to elucidate the most promis-
ing measures in this context.

– We evaluate empirically this collection of unsupervised measures with focus
on accuracy, time consumption, and practical feasibility. Our results indicate
that several measures could be valid tools for source code clone detection.

The remainder of this paper is structured as follows: Section 2 introduces the
background of this critical challenge. Section 3 technically explains the measures
to face this challenge and shows several examples. Section 4 evaluates all the
measures reviewed in the previous version using a complete benchmark dataset.
Section 5 discusses the results of our experiments. Finally, the paper concludes
with lessons learned and lines of future work.

2 Background

This section presents the information necessary to understand the challenge.
First, we define code similarity assessment; second, we explain why this challenge
is so significant nowadays; and third, we describe the implications and impact
of the challenge in academia and industry.

2.1 Problem definition

It seems clear that code duplication can lead to inconsistencies, especially if a
change is made in one part of the code but not in its clones [32]. In this context,



Unsupervised Source Code Clone Detection 3

it is also important to differentiate between code similarity measurement and
identification of source code clones. Code similarity measurement is a broad
concept, and clone identification is one of its applications. For instance, the
most similar instances can be reported as cloned instances just using a threshold
value to filter out the results of code similarity measurement [4].

Although there is no strict definition for the assessment of code similarity, it is
possible to describe the problem formally, such as given a set of code fragments
S = {C1, C2, . . . , Cn}, the goal is to find a function f : S × S → [0, 1] that
computes the similarity score between any Ci and Cj .

Therefore, f should map a given pair (Ci, Cj) to a value in the continuous
interval [0, 1], whereby:

– f(Ci, Cj) = 0 indicates that Ci and Cj are completely dissimilar
– f(Ci, Cj) = 1 indicates that Ci and Cj are identical
– f(Ci, Cj) increases as the similarity between Ci and Cj increases and vice
versa

The function f should compare Ci and Cj , considering various characteris-
tics such as variables, constants, function calls, comments, overall logic, or any
other code element susceptible to being compared [38]. Then, clone detection can
be implemented to discriminate between instances using, for example, a point
value separating clones and non-clones. Furthermore, although it was not con-
sidered in the frame of this work, it would be desirable that the results could be
accompanied by an explanation [20] for facilitating human assessment.

Similarity categories Multiple copies of similar code throughout a software
project can make managing the codebase difficult. However, not all the cases are
equal. In comparing pieces of code, some recent literature has categorized the
code similarities into four categories [3]. These categories help us understand
the degree of resemblance between two code fragments so that each category
represents a different level of likeness:

– Category I: The code fragments are identical, with just minor variations in
white spaces and annotations.

– Category II: The code fragments have the same structure, but there are dif-
ferences in the names of the identifiers, data types, spaces, and comments.

– Category III: Additionally, parts of the code might be removed or altered, or
new parts could be incorporated.

– Category IV: The code fragments may appear different but implement analo-
gous functionality.

The rationale behind this categorization is to provide insights into code com-
parison and help software engineers understand the cases they must face to make
better-informed decisions related to code maintenance.



4 Jorge Martinez-Gil

2.2 The importance of unsupervised measures

Detecting code clones is essential for maintaining software quality [16]. Unsu-
pervised code similarity assessment can help address this challenge since several
practical aspects are common to many software development projects:

– Unsupervised measures do not rely on labeled training data, making use of a
ground truth unnecessary. Labeled examples are only needed to validate the
performance of unsupervised approaches [27].

– Code can be written in various programming languages, using different coding
styles, etc. Some unsupervised measures can accommodate this variety without
a complex universal similarity metric.

– Understanding the meaning of code is complicated because code fragments
may be functionally equivalent even if they look dissimilar, and vice versa.
Some unsupervised measures can face that challenge.

– Codebases often contain comments, noise, etc. Some unsupervised measures
can differentiate between meaningful code patterns and unrelated elements.

2.3 Future perspectives

Duplicate code increases the maintenance burden because changes must be repli-
cated across all clones, which is time-consuming and error-prone [5]. Therefore,
identifying and refactoring these clones can reduce the maintenance effort [11].

Nowadays, where many open-source libraries and code repositories exist, un-
supervised source code similarity measurement can be helpful; it enables devel-
opers to navigate this diverse ecosystem and search for relevant code efficiently
with low consumption of computational resources [28]. This importance extends
to facilitating code reuse, which is crucial for reducing development time in the
face of growing software complexity [9].

Furthermore, detecting code similarities can improve security by identify-
ing vulnerabilities with known code patterns in the context of growing security
troubles. It can also contribute to code maintainability and refactoring efforts,
allowing developers to ensure software projects’ long-term sustainability.

We can also think of applications within various industries that benefit from
increased compliance and reliability in critical systems [29]. Furthermore, collab-
oration tools facilitate cooperation by connecting developers with similar code,
and quality assurance strategies could benefit from unsupervised code similarity
measurement by identifying similar cases for complete test coverage.

3 Methods

Early approaches for assessing the similarity relied on just textual analysis [25].
These techniques, while efficient, often struggle to capture the structural aspects
of code, resulting in limited accuracy [12]. However, the field has evolved a lot in
recent years. More sophisticated similarity measures assumed to perform better
have been proposed [10].



Unsupervised Source Code Clone Detection 5

3.1 Unsupervised methods

There are many methods (a.k.a. semantic similarity measures) to determine
the similarity between textual entities. Each measure offers a unique approach
based on specific characteristics or representations of the compared entities. We
have identified about 21 families that could be applied in this context, briefly
explained below in alphabetical order.

– Abstract Syntax Trees (ASTs) Similarity: ASTs are hierarchical rep-
resentations of the structure of code. AST similarity measures compare the
structural similarity between different AST representing code [22].

– Bag-of-Words Similarity: This similarity measure calculates the resem-
blance between texts by considering the frequency of individual words in each
text without considering word order or structure [7].

– Code Embeddings Similarity (CodeBERT): Code embeddings are vector
representations of source code. This method measures the similarity of code
based on these embeddings [2].

– Comments Similarity: It measures the similarity between code comments,
which can be helpful for code documentation and understanding. In principle,
many traditional text similarity measures can be used [29].

– Fuzzy Matching Similarity: Fuzzy matching compares strings for minor
syntactical variations. It is often used in data matching and search applications
[40], but we apply it here to measure code similarity.

– Function Calls Similarity: This family measures the similarity between
different code fragments based on the functions and procedures in the code
fragments [42].

– Graph-based Similarity: It calculates similarity based on a graph’s rela-
tions, which could represent various data structures and dependencies [43].

– Jaccard Similarity: Jaccard similarity measures the similarity between sets
of tokens by comparing their intersection and union. It is commonly used in
text analysis, recommendation systems, and information retrieval [14].

– Levenshtein Similarity: This measure, also known as edit distance, calcu-
lates the similarity between two strings by measuring the number of edits
needed to transform one into the other [24].

– Longest Common Subsequence (LCS) Similarity: LCS similarity cal-
culates the similarity between two sequences by finding the longest common
subsequence between them [6].

– Metrics Similarity: The idea is first to compute various metrics related to
the source code and then estimate the similarity between the values obtained
[33].

– N-grams Similarity: N-grams are contiguous sequences of ’n’ items (e.g.,
words or characters). N-gram similarity measures the similarity between texts
based on shared n-grams [8].

– Output Analysis Similarity: This method measures the similarity of pro-
gram outputs, which can be helpful for testing and debugging. In principle,
and if we assume the outputs as text, a wide range of traditional text similarity
measures can be used [29].



6 Jorge Martinez-Gil

– Perceptual Hashing Similarity: Perceptual hashing, often used in image
similarity, aims to generate a fixed-length hash code from images. In our con-
text, this method measures similarity based on hashes from visual represen-
tation of the code [35].

– Program Dependence Graph Similarity: This measure assesses the sim-
ilarity between code by analyzing the program dependence graph, which rep-
resents the dependencies between program elements [23].

– Rolling Hash Similarity: A rolling hash is a hash function that can be up-
dated efficiently as new data is processed. Rolling hash similarity can compare
substrings (hashes) in large texts [15]. We use here for comparing code.

– Running-Karp-Rabin Greedy-String-Tiling (RKR-GST) Similarity:
It is often used in the context of detecting plagiarism by identifying maximal
sequences of contiguous matching tokens (tiles) [41].

– Semdiff Similarity: Semdiff is a method for detecting semantic differences
between program versions. Semdiff similarity measures how code changes af-
fect the program’s semantics [17].

– Semantic Clone Similarity: This method family tries to measure the sim-
ilarity of code fragments based on the semantic meaning of the names of the
program elements (variables, methods, etc.) [13].

– TF-IDF Similarity: Term Frequency-Inverse Document Frequency (TF-
IDF) is used in text analysis to measure the importance of words in a text
compared to a larger corpus. TF-IDF similarity compares texts based on these
weighted terms [19].

– Winnow Similarity: It is a text comparison algorithm that identifies similar
texts by hashing them and comparing their fingerprints [39].

Next, we will look at some Java code examples, representing some interest-
ing cases of source code cloning, illustrating how all these similarity measures
quantify code similarity in practice.

3.2 Examples

In the examples below, T1 and T01 are two Java classes that produce the
same output but with different approaches: T1 prints the statement Welcome
to Java five times using five separate print statements. T01 achieves the same
output using a for loop that iterates five times, printing the statement on each
iteration. From the perspective of code clone detection, these two classes are
Category IV clones. The reason is that both are pieces of code that perform the
same operations but are implemented through different syntactic variations.

Even though the actual text of the code differs, the for loop versus repeated
print statements, the meaning, and the output are the same. However, detecting
such code clones can be challenging because it is not just a matter of matching
text strings but requires a deep understanding of the code’s logic and output,
which can be challenging to address. However, it is common to find similar cases
in real settings.



Unsupervised Source Code Clone Detection 7

1 public class T1 {

2 public static void main(String [] args) {

3 System.out.println("Welcome to Java");

4 System.out.println("Welcome to Java");

5 System.out.println("Welcome to Java");

6 System.out.println("Welcome to Java");

7 System.out.println("Welcome to Java");

8 }

9 }

1 public class T01 {

2 public static void main(String [] args){

3

4 for(int i = 0; i < 5; i++){

5 System.out.println("Welcome To Java");

6 }

7

8 }

9 }

On the contrary, the classes TemperatureConverter and CurrencyConverter
are similar in form. However, an experienced developer would quickly realize that
they calculate different things (temperature vs currencies), so they should not
be considered clones. However, their high similarity in form might make many
unsupervised measures consider them Category II clones.

1 public class TemperatureConverter {

2 public static double celsiusToFahrenheit(double cels) {

3 return cels * 9 / 5 + 32;

4 }

5 }

1 public class CurrencyConverter {

2 public static double usdToEur(double usd) {

3 return usd * 85 / 100;

4 }

5 }

Table 1 compares various unsupervised similarity measures for code analysis.
Some of these measures are based on textual similarity, while others are based on
the structure of the code. Other measures might analyze the code’s functionality
beyond just the text or structure. In principle, there is no accurate or inaccurate
result in this context. However, intuition tells us that some measures may better
serve our purposes. The ideal result would be 1.00 in the first column and 0.00 in
the second. Nevertheless, any result that can discern clones (giving them a high
similarity value) from non-clones (giving them a low similarity value) would be
good.



8 Jorge Martinez-Gil

Measure Score-Ex1. Score-Ex2.

Abstract Syntax Trees (ASTs) Similarity 0.50 0.81
Bag-of-Words Similarity 0.72 0.65
Code Embeddings Similarity 0.99 1.00
Comments Similarity 1.00 1.00
Fuzzy Matching Similarity 0.54 0.64
Function Calls similarity 1.00 0.00
Graph-based Similarity 0.38 0.34
Jaccard Similarity 0.27 0.35
Levenshtein Similarity 0.51 0.69
Longest Common Subsequence (LCS) Similarity 0.19 0.29
Metrics Similarity 0.98 1.00
N-grams Similarity 0.26 0.14
Output Analysis Similarity 1.00 0.00
Perceptual Hashing Similarity 0.69 0.88
Program Dependence Graph Similarity 1.00 1.00
R.-Karp-Rabin G.-Str.-Til. (RKR-GST) Similarity 0.96 0.83
Rolling Hash Similarity 1.00 0.55
Semdiff Similarity 0.22 0.40
Semantic Clone Similarity 0.54 0.79
TF-IDF Similarity 0.67 0.48
Winnow Similarity 1.00 0.60

Table 1: Comparison of various unsupervised similarity measures for code simi-
larity measurement

Something special happens with the Comments Similarity result. Since none
of the displayed code fragments have comments, the measure thinks they are
similar. This is just an example of why caution is necessary when considering
the results.

4 Evaluation

Several aspects come into play when evaluating and comparing unsupervised
similarity measures for clone detection. To effectively evaluate these techniques,
it is essential to consider the dataset’s nature, the clone categories to face, and
the task’s requirements.

In this way, some measures excel in comparing textual content, making them
suitable for detecting cloned text. Other techniques are more apt for identifying
similar functionality. In contrast, other measures can assist in uncovering struc-
tural similarities between code and text. The choice depends on the nature of
the data in the benchmark dataset.



Unsupervised Source Code Clone Detection 9

4.1 Dataset

We are using here the IR-Plag dataset1 which is designed to serve as a benchmark
for evaluating and comparing the performance of different strategies [21]. This
dataset includes plagiarized code files deliberately crafted to mimic academic
plagiarism behaviors. Although the dataset is compiled to detect plagiarism, it
is valid for our purposes since the practical result of plagiarism and cloning is the
same in practice, even if their original intentionality might differ (intention to
deceive in the first case, no intentionality in the second). Moreover, this dataset
does not merely focus on simplistic plagiarism attacks but encompasses a com-
plete range of complexities. Although this dataset does not classify clones, it can
be useful in detecting suitable semantic similarity measures for mitigating code
redundancy and duplication within complex software projects.

In analyzing a dataset of code files, we observe the following metrics: The
dataset contains seven original code files. A high number of files, 355 (77%),
are identified as plagiarized, suggesting a considerable prevalence of duplication.
There are 105 non-plagiarized files, which might represent modified or derivative
works. The total count of code files in the dataset is 467. Within these files are
59,201 tokens, with 540 distinct tokens, indicating the variety of programming
language elements used. The size of the files varies significantly, with the largest
file containing 286 tokens and the smallest comprising 40 tokens. On average,
a code file in this dataset includes around 126 tokens. These insights show the
dataset’s composition, reflecting a great diversity in programming syntax.

4.2 Results

In the following, we show the results obtained from the experiments on the IR-
Plag dataset. We look primarily at the accuracy and the execution time required
as we believe these are two of the most important aspects to consider when
considering putting a measure into operation. These results can be reproduced
with the provided source code2.

On the one hand, Figure 1 compares the different measures. The horizontal
axis quantifies the accuracy of each measure, while the vertical axis lists the
unsupervised measures. Output Analysis has the highest accuracy score, which
could imply that it is most effective at detecting code that performs the same
function despite differences in implementation. Contrariwise, LCS has the lowest
accuracy score, indicating that it might not be as effective in this comparison.

It is essential to note that the dataset contains 77% clones. Therefore, any
method could say that all comparisons give rise to a clone and thus obtain a
0.77 accuracy. This would not be a good result. Figure 1 shows that only using
three measures produces a real gain over that base result.

On the other hand, Figure 2 presents a comparative analysis of various mea-
sures used to execute code, measured by their execution time. The horizontal

1 https://github.com/oscarkarnalim/sourcecodeplagiarismdataset
2 https://github.com/jorge-martinez-gil/codesim

https://github.com/oscarkarnalim/sourcecodeplagiarismdataset
https://github.com/jorge-martinez-gil/codesim


10 Jorge Martinez-Gil

Fig. 1: Accuracy of the unsupervised semantic similarity measures when per-
forming clone detection

axis quantifies the execution time, while the vertical axis lists the unsupervised
measures. The Output Analysis shows the longest execution time, significantly
outpacing other methods such as N-grams and Code Embeddings. The remaining
measures show lower execution times, suggesting a more efficient performance.
Two facts can be immediately deduced from these experiments:

1. First, only four of the measures studied (i.e., Output Analysis, Winnow,
RKR-GST, and Jaccard) help identify clones effectively. This suggests that
most unsupervised semantic similarity measures are not helpful in the cur-
rent form. Therefore, more research on innovative approaches to clone de-
tection is needed.

2. Despite being excellent in accuracy (e.g., Output Analysis), some techniques
incur such a high computational cost that incorporating them into a practi-
cal, real-world tool for programmers becomes unrealistic. The reason Output
Analysis takes so much execution time is that it must take the two pieces
of code, encapsulate them for compilation, pass some random parameters to
them (if necessary), and compare the outputs produced. This entire process
is very computationally expensive.



Unsupervised Source Code Clone Detection 11

Fig. 2: Execution time of the unsupervised semantic similarity measures when
performing clone detection

Other time-consuming similarity measures are Rolling Hash (very intensive
in the use of mathematical operations), Comments Similarity (identifying com-
ments involves the use of regular expressions, which is computationally expen-
sive), and Code Embeddings (which needs to search and identify embeddings as
well as perform operations on them). Therefore, it would be possible to define
a feasibility index that calculates a combination of accuracy and execution time
to elucidate which measures could work well in real environments. This could be
done by weighing the importance of accuracy about time and dividing the result
by the total execution time.

Figure 3 shows us the calculation of the feasibility index. We consider the
accuracy importance over the execution time as 10:1. Therefore, just Jaccard,
RKR-GST, and Winnow (in that order) would be good candidates for use in real
environments due to a reasonable combination of accuracy and execution time.
However, these measures should be used just for an automatic recommendation
since the gain in accuracy over the base result only allows us to operate them
with supervision.



12 Jorge Martinez-Gil

Fig. 3: Comparison of the feasibility index of the unsupervised methods

5 Discussion

Our experiments show that a reduced group of unsupervised source code simi-
larity measurements could serve for source code clone detection. These methods
could improve various aspects of software engineering. For example, they could
suggest the existence of clones and, therefore, present an opportunity to refactor
the code into reusable parts. This might facilitate code reuse, which is vital in
software engineering.

It is also necessary to remark that noisy and unstructured code environments
characterize real-world scenarios. We have identified several unsupervised mea-
sures that have shown promise in managing this noise and variability, making
them valuable when labeled data is limited or impractical.

Despite some progress, our research still needs to solve several challenges.
These include achieving cross-language similarity measurement and ensuring
scalability for large codebases. These challenges present compelling opportu-
nities for future research. This means that our research results, although slightly
applicable in their current form, need further research to be useful as software
development advances into a more automated future.



Unsupervised Source Code Clone Detection 13

6 Conclusion

The challenge of source code clone detection represents a crucial aspect of soft-
ware engineering that impacts several applications. In this work, we have evalu-
ated the existing unsupervised similarity measures to address the challenges of
the absence of labeled data and diverse coding styles. Our research will illus-
trate how unsupervised source code similarity measurement can facilitate clone
detection.

As codebases grow, developing accurate and efficient unsupervised similarity
measures remains an essential area of exploration for the community. Further-
more, the need for effective unsupervised techniques will likely expand as the
software industry evolves. Although studying supervised techniques may promise
good results, unsupervised techniques will always be an option due to their more
realistic requirements, adaptability, interpretability, and efficiency.

Therefore, the future of source code clone detection using unsupervised mea-
sures holds notable promise. Future efforts could focus on hybrid approaches
that integrate the strengths of different methods (a.k.a. ensembles), leading to
more robust and accurate similarity assessments. Exploring transfer learning
techniques could also be a way to improve performance. The goal should be to
improve strategies for code analysis with minimal human intervention.

Acknowledgments

The author thanks all the anonymous reviewers for their help in improving the
manuscript. The research reported in this paper has been funded by the Federal
Ministry for Climate Action, Environment, Energy, Mobility, Innovation and
Technology (BMK), the Federal Ministry for Labour and Economy (BMAW),
and the State of Upper Austria in the frame of the SCCH competence center IN-
TEGRATE [(FFG grant no. 892418)] in the COMET - Competence Centers for
Excellent Technologies Programme managed by Austrian Research Promotion
Agency FFG.

References

1. Qurat Ul Ain, Wasi Haider Butt, Muhammad Waseem Anwar, Farooque Azam,
and Bilal Maqbool. A systematic review on code clone detection. IEEE access,
7:86121–86144, 2019.

2. Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning
distributed representations of code. Proceedings of the ACM on Programming
Languages, 3(POPL):1–29, 2019.

3. Rodrigo C Aniceto, Maristela Holanda, Carla Castanho, and Dilma Da Silva.
Source code plagiarism detection in an educational context: A literature mapping.
In 2021 IEEE Frontiers in Education Conference (FIE), pages 1–9. IEEE, 2021.



14 Jorge Martinez-Gil

4. Ira D. Baxter, Andrew Yahin, Leonardo Mendonça de Moura, Marcelo Sant’Anna,
and Lorraine Bier. Clone detection using abstract syntax trees. In 1998 Inter-
national Conference on Software Maintenance, ICSM 1998, Bethesda, Maryland,
USA, November 16-19, 1998, pages 368–377. IEEE Computer Society, 1998.

5. Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo.
Comparison and evaluation of clone detection tools. IEEE Transactions on software
engineering, 33(9):577–591, 2007.

6. Lasse Bergroth, Harri Hakonen, and Timo Raita. A survey of longest common sub-
sequence algorithms. In Proceedings Seventh International Symposium on String
Processing and Information Retrieval. SPIRE 2000, pages 39–48. IEEE, 2000.

7. Courtney D Corley and Rada Mihalcea. Measuring the semantic similarity of texts.
In Proceedings of the ACL workshop on empirical modeling of semantic equivalence
and entailment, pages 13–18, 2005.

8. Marc Damashek. Gauging similarity with n-grams: Language-independent catego-
rization of text. Science, 267(5199):843–848, 1995.

9. Yingnong Dang, Song Ge, Ray Huang, and Dongmei Zhang. Code clone detection
experience at microsoft. In Proceedings of the 5th International Workshop on
Software Clones, pages 63–64, 2011.

10. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding. In Jill
Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–4186. Asso-
ciation for Computational Linguistics, 2019.

11. Shihan Dou, Junjie Shan, Haoxiang Jia, Wenhao Deng, Zhiheng Xi, Wei He, Yuem-
ing Wu, Tao Gui, Yang Liu, and Xuanjing Huang. Towards understanding the ca-
pability of large language models on code clone detection: a survey. arXiv preprint
arXiv:2308.01191, 2023.

12. Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. The program dependence
graph and its use in optimization. ACM Transactions on Programming Languages
and Systems (TOPLAS), 9(3):319–349, 1987.

13. Mark Gabel, Lingxiao Jiang, and Zhendong Su. Scalable detection of semantic
clones. In Proceedings of the 30th international conference on Software engineering,
pages 321–330, 2008.

14. Sakib Haque, Zachary Eberhart, Aakash Bansal, and Collin McMillan. Semantic
similarity metrics for evaluating source code summarization. In Proceedings of
the 30th IEEE/ACM International Conference on Program Comprehension, pages
36–47, 2022.

15. Anggit Dwi Hartanto, Andy Syaputra, and Yoga Pristyanto. Best parameter se-
lection of rabin-karp algorithm in detecting document similarity. In 2019 Interna-
tional Conference on Information and Communications Technology (ICOIACT),
pages 457–461. IEEE, 2019.

16. Yoshiki Higo, Yasushi Ueda, Toshihro Kamiya, Shinji Kusumoto, and Katsuro
Inoue. On software maintenance process improvement based on code clone analysis.
In Product Focused Software Process Improvement: 4th International Conference,
PROFES 2002 Rovaniemi, Finland, December 9–11, 2002 Proceedings 4, pages
185–197. Springer, 2002.

17. Susan Horwitz. Identifying the semantic and textual differences between two ver-
sions of a program. In Proceedings of the ACM SIGPLAN 1990 conference on
Programming language design and implementation, pages 234–245, 1990.



Unsupervised Source Code Clone Detection 15

18. Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan Wagner.
Do code clones matter? In 2009 IEEE 31st International Conference on Software
Engineering, pages 485–495. IEEE, 2009.

19. Oscar Karnalim. Tf-idf inspired detection for cross-language source code plagiarism
and collusion. Computer Science, 21, 2020.

20. Oscar Karnalim. Explanation in code similarity investigation. IEEE Access,
9:59935–59948, 2021.

21. Oscar Karnalim, Setia Budi, Hapnes Toba, and Mike Joy. Source code plagiarism
detection in academia with information retrieval: Dataset and the observation.
Informatics in Education, 18(2):321–344, 2019.

22. Oscar Karnalim and Simon. Syntax trees and information retrieval to improve code
similarity detection. In Proceedings of the Twenty-Second Australasian Computing
Education Conference, pages 48–55, 2020.

23. Jens Krinke. Identifying similar code with program dependence graphs. In Proceed-
ings Eighth Working Conference on Reverse Engineering, pages 301–309. IEEE,
2001.

24. Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. In Soviet physics doklady, volume 10, pages 707–710, 1966.

25. Jorge Martinez-Gil. Semantic similarity aggregators for very short textual ex-
pressions: a case study on landmarks and points of interest. J. Intell. Inf. Syst.,
53(2):361–380, 2019.

26. Jorge Martinez-Gil. A comprehensive review of stacking methods for semantic
similarity measurement. Machine Learning with Applications, 10:100423, 2022.

27. Jorge Martinez-Gil. A comparative study of ensemble techniques based on genetic
programming: A case study in semantic similarity assessment. Int. J. Softw. Eng.
Knowl. Eng., 33(2):289–312, 2023.

28. Jorge Martinez-Gil and Jose M. Chaves-Gonzalez. Automatic design of semantic
similarity controllers based on fuzzy logics. Expert Syst. Appl., 131:45–59, 2019.

29. Jorge Martinez-Gil and Jose M. Chaves-Gonzalez. Semantic similarity controllers:
On the trade-off between accuracy and interpretability. Knowl. Based Syst.,
234:107609, 2021.

30. Jorge Martinez-Gil and Jose Manuel Chaves-Gonzalez. A novel method based
on symbolic regression for interpretable semantic similarity measurement. Expert
Syst. Appl., 160:113663, 2020.

31. Jorge Martinez-Gil and Jose Manuel Chaves-Gonzalez. Sustainable semantic sim-
ilarity assessment. Journal of Intelligent & Fuzzy Systems, 43(5):6163–6174, 2022.

32. Matija Novak, Mike Joy, and Dragutin Kermek. Source-code similarity detection
and detection tools used in academia: a systematic review. ACM Transactions on
Computing Education (TOCE), 19(3):1–37, 2019.

33. Alberto S Nuñez-Varela, Héctor G Pérez-Gonzalez, Francisco E Mart́ınez-Perez,
and Carlos Soubervielle-Montalvo. Source code metrics: A systematic mapping
study. Journal of Systems and Software, 128:164–197, 2017.

34. Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word represen-
tations. In Marilyn A. Walker, Heng Ji, and Amanda Stent, editors, Proceedings of
the 2018 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, NAACL-HLT 2018, New
Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), pages 2227–
2237. Association for Computational Linguistics, 2018.



16 Jorge Martinez-Gil

35. Chaiyong Ragkhitwetsagul, Jens Krinke, and Bruno Marnette. A picture is worth a
thousand words: Code clone detection based on image similarity. In 12th IEEE In-
ternational Workshop on Software Clones, IWSC 2018, Campobasso, Italy, March
20, 2018, pages 44–50. IEEE Computer Society, 2018.

36. Chanchal K Roy, James R Cordy, and Rainer Koschke. Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach. Science of
computer programming, 74(7):470–495, 2009.

37. Chanchal Kumar Roy and James R Cordy. A survey on software clone detection
research. Queen’s School of computing TR, 541(115):64–68, 2007.

38. Neha Saini, Sukhdip Singh, et al. Code clones: Detection and management. Pro-
cedia computer science, 132:718–727, 2018.

39. Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. Winnowing: local algorithms
for document fingerprinting. In Proceedings of the 2003 ACM SIGMOD interna-
tional conference on Management of data, pages 76–85, 2003.

40. Nimisha Singla and Deepak Garg. String matching algorithms and their applicabil-
ity in various applications. International journal of soft computing and engineering,
1(6):218–222, 2012.

41. Michael J Wise. String similarity via greedy string tiling and running karp-rabin
matching. Online Preprint, Dec, 119(1):1–17, 1993.

42. Ming Xu, Lingfei Wu, Shuhui Qi, Jian Xu, Haiping Zhang, Yizhi Ren, and Ning
Zheng. A similarity metric method of obfuscated malware using function-call
graph. Journal of Computer Virology and Hacking Techniques, 9:35–47, 2013.

43. Laura A Zager and George C Verghese. Graph similarity scoring and matching.
Applied mathematics letters, 21(1):86–94, 2008.


	Source Code Clone Detection Using Unsupervised Similarity Measures
	Jorge Martinez-Gil

