Managing Branch Versioning in
Versioned /Temporal XML Documents*

Luis J. Arévalo Rosado, Antonio Polo Marquez, and Jorge Martinez Gil

University of Extremadura, Department of Computer Science
Avda. de la Universidad s/n 10071 Caceres (Spain)
{1jarevalo,polo, jmargil}@unex.es

Abstract. Due to the linear nature of time, XML timestamped solu-
tions for the management of XML versions have difficulty in supporting
non-lineal versioning. Following up on our previous work, which dealt
with a new technique for the management of non-lineal versions of XML
graph documents, called versionstamp, we have gone a step forward by
adding temporal information to each version included in the document.
Not only does it allow us to query the vDocuments on a temporal and
version level but also we can manage branch versioning in the temporal
axis. Moreover, to check its functionality, we have compared our tech-
nique to a timestamped XML solution and a set of Web services has
been developed. The easy management of multiple versioning, the large
number of queries in different XML standard query languages and its im-
plementation by using only XML technology, are some of the advantages
of the proposed technique.

1 Introduction

In this collaborative society information flows through all forms of computing,
however nobody looks at it in a static way because it changes throughout time
and its management becomes necessary to query past information, to retrieve
documents belonging to a specific version and to monitor the changes, etc. Doc-
ument management has been used for years in such environments like collabora-
tive software development, file share resources, etc and more recently, with the
appearance of XML [T, it has become necessary also to manage these documents.

Versions of an XML document can be managed through traditional procedures
like CVS [2] or subversion [3], the traditional adapted procedures based on XML
operations change (delta XML) [5] or integrate the different versions into a
single XML file using temporal [SITTIT2T3IT4] or version [9UI5] technique. We
consider that whatever XML versioning system should have the following main
features: it should be able to, validate all XML versions of the document to
its schema (the first two solutions do not take into account this fact), support
branch versioning (temporal solutions do not do this) and, have the possibility to

* This work has been financed by Spanish CICYT projects “TIN2005-09098-C05-05"
and “TIN2005-25882-E".

D. Barbosa et al. (Eds.): XSym 2007, LNCS 4704, pp. 107-{121} 2007.
© Springer-Verlag Berlin Heidelberg 2007

108 L.J.A. Rosado, A.P. Marquez, and J.M. Gil

query the XML versioned documents using some XML standard query languages
such as XQuery and XPath (the first solution does not do this).

To get these characteristics, we have used the technique shown in [9] that con-
sists of marking the document with a versionstamp instead of using a timestamp.
In this work we have gone even further by adding temporal information to each
version allowing us to query the document either on temporal or/and version
level. We have also defined the basic updated operations common to whatever
XML document, describing them by means of an XML document called XML
transactional document which allows us to manage changes for any markup lan-
guage based on the XML specification. Moreover, to check its functionality, we
have compared our technique to a timestamped XML solution as well as devel-
oping a set of Web Services.

The remainder of this paper is organized as follows: we begin by summarizing
the current solutions for the management of XML versions. Then, we continue
showing the foundations of this paper based on [9], extending it with temporal
information and describing later the basic updated operations. We then follow
up this by showing several queries made on a temporal and version level. After
that, some implementation details and the achieved results are discussed and
finally, we offer our conclusions and a look at our future work.

2 State-of-the-Art

The problem of XML document version management combines the issues of doc-
ument version management [456l7] and temporal databases [22]. Document ver-
sion management has been used for years mainly in collaborative environments.
These traditional techniques [2I3] are based on diff lined-based algorithms to lo-
cate the differences between two versions of a text. For XML documents, where
the organization in lines can be neglected, line-based approaches are inappropri-
ate since the structure of the document is lost. The necessity to manage XML
versions not only is important in XML databases but also in XML document
management because nowadays more and more applications use it to store their
configurations, data, etc, such as OpenOffice and Microsoft Office.

XML solutions have been centered mainly in some of the following ideas.
Delta XML management is based on traditional change operation procedures
adapted to XML [4l5]. Tt consists of obtaining and storing the XML differences
between two versions (delta XML). An exhaustive study of XML diff approaches
is made in [I0] where the authors use an C++ implementation of [4] to manage
XML OpenOffice document versions. However delta XML solutions have the
same problems than traditional techniques, it means, neither XML validation
nor XML query cannot be carried out in these solutions.

Multiversion XML [6l7] define an indexing technique for branched version-
ing which they called BT-Tree and BT-ElementList respectively, however they
cannot be used in XML Standard Query languages (XQuery or XPath[2]).

Temporal XML Representation based on temporal database topics [21] rep-
resenting and managing historical information in XML. In [II] a technique for

Managing Branch Versioning in Versioned /Temporal XML Documents 109

managing temporal web documents is shown using an XML /XSLT infrastruc-
ture. A data model is proposed for temporal XML documents [I4] where leaf data
nodes can have alternative values; however supporting different structures for
non-leaf nodes is not discussed. Extensions of XPath data model are exposed in
[13U12] to represent and query transactional and valid time respectively, by means
of the addition of several temporal dimensions. A temporally-grouped data model
is shown in [§] that gives us a way to represent the content database evolution
using XML timestamps, however non-lineal versioning is not supported.

The integration of time and version concepts to manage dynamic information
has been studied recently in [I5/16] for XML and object-oriented databases re-
spectively. In [I5] the authors defined temporal delta (tDelta) and introduces
version time in it, however query support is not discussed.

Due to the linear nature of time, XML timestamped solutions for the man-
agement of XML versions have difficulty in supporting non-lineal versioning. In
collaborative scenario, due to the fact that users can update any version of the
document generating a new version either from the current one or discard it and
reuse an old version, branched versioning is necessary. Using our solution, called
as versionstamp or vstamp [9], this feature can be modeled in a easy way.

3 XML Versioned Documents

In this section we present how to manage changes in XML document in a branch
way. Firstly the foundations our work is based on [9] is shown. Then we extend
it to incorporate temporal information and finally we describe a taxonomy of
changes for XML documents.

3.1 Versionstamp Technique

An XML versioned graph data model, called as V-XML data model, was shown
in [9] to represent versions in XML graph documents by means of adding ver-
sionstamp information in the graph document obtaining a new XML document
which we called as vXML Document or vDocument. This is formed by two sec-
tions: The first one which stores all information about the included versions
and the relationship between them and the second one being, each element in
the document is transformed into a versioned element by means of defining its
version validity, that is, for which version/s of the document it is valid.

In order to store the included versions, we decided to map by means of an
XML document, which we called as wversion_tree, how the versions have been
made over time. Each included version is an element and represents the differ-
ent snapshots of the document. If there is an parent-child relationship from V;
element to Vj element, it means that, V; is created by updating V;.

Once the included versions have been represented, it is necessary for each
versioned element to represent its version validity. To do it, we use a versionstamp
technique, which we called as Version Region [9], that is defined as a set of version
identifiers from the version tree indicating for which versions of the tree it is valid

110 L.J.A. Rosado, A.P. Marquez, and J.M. Gil

<?xml version="1.0"?>
<v_document>
<version_tree>
<version xml:id="V1" tstart="2007-01-01" tend="2007-01-05">
<version xml:id="V2" tstart="2007-01-06" tend="2007-01-08">
<version xml: "V3" tstart="2007-01-09" tend="2007-01-14">
<version xml:id="V4" tstart="2007-01-15" tend="2007-01-20"/>
<version xml:id="V9" tstart="2007-02-26" tend="2007-03-09"/>
</version>
<version xml:id="V5" tstart="2007-01-21" tend="2007-01-23">
<version xml:id="V7" tstart="2007-02-10" tend="2007-02-14"/>
</version>
<version xml:id="V6"

tstart="2007-01-24" tend="2007-02-05">

<version xml:id="V8" tstart="2007-02-15" tend="2007-02-25"/>
<version xml:id="V10" tstart="2007-03-10" tend="9999-12-31"/> oO——>0
</version> v5 v7 O vo
</version>
</version> v1 v2, v3 vg
<version xml:id="now" tstart="1970-01-01" tend="9999-12-31"/> O > >O

</version_tree> o
ionec e}
<versioned_doc> /
....... v
</versioned_doc> ——>QO V8
</v_document>

2007- 2007- 2007- 2007- 2007- 2007- 2007- 2007- 2007- 2007- 2007-
01-01 01-05 01-08 01-14 01-20 01-23 02-05 02-10 02-14 02-25 03-09

ettt Rttt
vi ~ v2 ~ v3 ' v4 = V5 ' V6 ‘V7V8V9

time

Fig. 1. XML and graphical representation of a version tree with temporal information

<?xml version="1.0"?>

<v_document> — 0O
<version_tree> v5 v7 o v
</version_tree> v1 v2 v3 v
<versioned_doc> O—— %O*)b

""""""" 10
<title v:start="V1" v:iend="V9"> O§/ oV
-------- v
<authors vistart="V1" viend="V9"> ———>O V8

<author vistart="V1" viend="V9">
'V1" viend="V3 V10">Luis Arevalo</v:data>
V3" viend="V9">Luis J. Arevalo</v:data>
<v:data v:start="V10" viend="now">Luis Arevalo Rosado</v:data>
</author>
</authors>

</title>
</versioned_doc>
</v_document>

2007- 2007- 2007- 2007- 2007- 2007- 2007- 2007- 2007- 2007- 2007-
01-01 01-05 01-08 01-14 01-20 01-23 02-05 02-10 02-14 02-25 03-09 7
[I | | | ! | i | | |
! \al ! vz o V3 ‘ va I) ! Ve ! I v7 ! vs ! Vo ‘ Vvio
time

Fig. 2. Versioned elements with version region

(a sub-tree of the version tree). A version region is a [start-End| pair where the
start value is a version identifier that represents the origin node of the valid area
in the version tree and End is a set of version identifiers that indicate when
each area has stopped being valid. In this way each element in the versioned
document is formed by a version region that is converted into two attributes,
v:start and v:end. The first one is defined as an IDREF datatype attribute which
refers to a version identifier from the version tree and the second one defined as
IDREFS datatype which allows us to represent a set of version identifiers from
the version tree.

Managing Branch Versioning in Versioned /Temporal XML Documents 111

In figure[Mland 2 a vDocument is shown. On the one hand in figure[llthe version
tree with several versions of an XML document is shown: i.e: from the version
identified by Vg several changes have been made (identified by V3, V5, Vg). On
the other hand in figure [several versioned elements are shown. i.e: the first au-
thor element is valid from V7 and stops being valid in Vg, this means that it is
valid for all descendants-self of the V; version except all Vg descendant-self ver-
sions. Another example is the first v:data child for author element which is valid
from [Vy, {V3,Vi0}] so it is valid in the versions identified by V1,V3,V5,V7, Vg
and Vg since all descendant-self of V3 and Vg are not included meanwhile the
second v:data of this author is only valid for all descendants versions of V3
except descendants-self of Vg. The special value "now" in the attribute v:end
indicates "no changes until now", in other words, the version region is formed
by all version descendants from the v:start attribute. Obviously, we have to take
into account that an element cannot exist without its ancestor elements.

3.2 Temporal Time in vDocuments

When a new version of the document is generated in a vDocument, these changes
happen at some point in time. Until now, we have only represented the relation-
ship between the versions in vDocuments without taking into account when these
changes occurred, this means that, the temporal validity information associated
to each version is lost. In this section we show how to integrate the valid-time
axis in a vDocument calling as VTstamp.

Temporal database researchers have focused on three principal dimensions of
time [22]: valid time, transactional time and user-defined time. In this work,
we have decided to model the valid-time axis, although the other axes can be
managed in the same way. The valid time of a fact is defined [22] as the time
when the fact is true in the modeled reality, in our case, the valid time of a
version is when the version is true. We have decided to include the valid time
by means of a time interval, a pair of two time instants [t1,t2] that is turned
into two attributes for each version defined in the document as shown in figure
[The following restrictions must be carried out: 1) For each version defined in
the version tree, the value of t; instant must always be less than to 2) Any two
time intervals from the version tree cannot overlap and 3) We assume that time
is bounded.

On the other hand it is also necessary to define the valid time for each tag
included in the document, that is when this tag is valid. Using the version region
used in our technique, we can define its temporal validity easily. Due to the fact
that a specific tag is valid in a set of versions from the version tree, this means
that, this tag will also be valid in each period of time for each valid version. For
example in figure [2] the temporal validity of a specific v:data tag which is valid
in the following version: [V, {V3,V1o}] is shown, therefore it will be valid in the
following time intervals {[01-01,01-05], [01-06,01-08], [01-21,01-23], [01-24,02-05],
[02-10,02-14], [02-15,02-25]} (shown with a thick line above in the figure). Notice
that some of these time intervals can be joined forming a continuous period of

112 L.J.A. Rosado, A.P. Marquez, and J.M. Gil

time (coalesce) i.e: [02-10,02-25], however, this is not advisable since they are
placed in different branches from the version tree.

3.3 Changing and Updating a VXML Document

As has been said, XML documents are not static, so it is necessary to manage
inserts, deletes or updates that can modify them [20]. Beginning at the initial
state of the document (version 0), new versions are then established by applying
a number of changes to whatever version defined in the document. Once we know
how to represent versions in XML documents, the following questions will be:
what kind of change operations can generate a new version? And, how to update
the XML versioned document from a change operation?.

In order to answer the first question, we have analyzed which items can be
changed in an XML document and which operations can be performed on them.
However, before this, it is necessary to identify thoroughly those elements which
have been changed from the current version. Among the different possibilities
shown in [4], we have decided to add an attribute idf to each element in the docu-
ment in order to identify it in a vDocument, with the exception of v:data, v:attrib
and v:isref because those elements are identified by its parent element. Thus, the
basic structural XML operations, common in whatever document based on the
XML specification, are shown in table [I1

Although mowve operation can be represented as a delete and an insert operation
we have decided to include it as one of our basic operation since it is a very frequent
change in XML documents. According to the consistency principle, to accept the
execution of each primitive a restriction must be satisfied, that is, the document
obtained must be well-formed, and each version of the document must be valid in
accordance to the specifications of its XML-Schema. To guarantee this, a whole set

Table 1. XML changes primitives

]Operations

Meaning

IE (idf,name,pos)

It adds a new element with the name name from the
parent idf in the position pos

DE (idf)

It removes the element identified by idf All valid
descendant elements are deleted too

RE(idf, name)

It renames the name of the element identified by idf

TA(idf, name, value)

It adds an attribute for the ¢df parent

DA(idf, name)

It removes the attribute called name from the element
identified by idf

UA(idf, name,n value)

It changes the value of the attribute called name for the
parent idf for the n wvalue

IC(idf,data)

It adds a PCDATA text for the idf parent

DC(idf)

Removes the content for the element identified by idf

UC(idf, data)

Changes the PCDATA value for idf to data value

ME(idf idf from,pos)

Moves the element identified by idf from and its
descendants to element idf in the position pos

Managing Branch Versioning in Versioned /Temporal XML Documents 113

of pre-conditions to be fulfilled have been defined for each single operation before
producing a new version of the document. For example: 1) the “idf” parameter for
all operations must exist for the version we want to update, 2) the name of the at-
tribute in IA operation implies that another attribute for this element cannot exist
from the current version (there cannot be two attributes with the same name) and
3) the DC operation cannot be carried out if there isn’t any PCDATA information
for the required identifier.

These basic updated operations can be obtained mainly by means of two
techniques. On the one hand, obtaining the XML operational differences be-
tween two versions by means of several approaches such as [4[I8/T9] or on the
other hand from a certain version specifying which changes we want to carry out.
The technique proposed in this work is based on both solutions, needing, there-
fore, a mechanism to integrate them. This consists of representing each update
operation exposed previously in an XML format.

In this way if an approach based on differences is chosen, then an XSLT
stylesheet, which transforms this XML document with differences to our XML
representation, is defined. From [I0], where several XML diff approaches are
analyzed, we have decided to choose JXydiff [25] which is a Java tool for detecting
changes in XML documents based on Cobena’s work shown in [4]. We chose this
for the following reasons: 1) It has the main features to retrieve XML differences:
can manage all kind of XML nodes, can detect move and update operations and
is based on a tree oriented algorithm, 2) It is written in Java, so its integration
in our implementation is immediate and 3) It is very easy to export its output
XML differences to our XML representation by means of an XSLT stylesheet. As
a future work, our idea is to use a relational-based approach [I7] for detecting
changes in XML documents due to scalability problem that suffers the main-
memory Diff algorithms mainly in Java. On the other hand, if we decide to
change the document manually, the change editor has only to generate a batch
document with update operations in our XML representation.

In this way, the creation of a new version is defined by a set of the afore-
mentioned operations represented in an XML document with changes, which
we call an XML transaction document, as is with the concept of transaction in
databases, the vDocument is updated if and only if all changes are executed.
This transaction is carried out in the following three phases:

Phase 1) Retrieval of the version to modify. The document to work on will
be the version of the XML document obtained from the vDocument, to which
the XML change transaction will be applied.

Phase 2) Modification of the retrieved XML document.

Phase 3) Updating of the versioned document. a). Obtain the XML trans-
action document b). Execute each operation from this XML to the vDocument
and ¢). The new version and its associated temporal information is added to the
version tree.

In figure Bl the XML transaction schema is shown as well as a practical ex-
ample. As we can see, an XML transaction document may be formed by several
versions where each version may be formed either by a sole operation or by

114 L.J.A. Rosado, A.P. Marquez, and J.M. Gil

' [DEJ[RE][IA] --E-ITJ_?IW_?I

idf idf idf idf idf idf idf idf idf
value name name name ctx ctx idf_from
value value copy
pos
<changes >
<n_version dim_now="V1" new_v="V2">
<|E idf="d1e316" name="article" pos="4">
<IE name="title" pos="1">
<IA name="articleCode" value="12"/>
<IC ctx="Versionstamp"/>
</IE>
</IE>
<DA idf="d1eE4" name="articleCode"/>
<UC idf="d1e808" ctx="XML"/>
</n_version>
<n_version dim_now="V1" new_v="V1.1.1">
<UA idf="d1e211" name="articleCode" value="13"/>

<ME idf="d1e583" idf_from="d1e23" pos="4" copy="yes"/>
<DC idf="d1e892"/>
</n_version>
</changes>

Fig. 3. Schema and an example of an XML transactional document

means of several of them (the parameters of each operation from table [I are
defined as attributes). For example, the first DA operation shown in figure
is formed by two attributes: idf that stores the parent identifier (dleE4) and
name (articleCode) that is the name attribute to delete. Another example is the
IE operation, InsertElement, that can be formed by one or several IE/TA/IC
operations as is shown in the same figure. In that case, the first IE operation
inserts an element which has a child element which contains an attribute (IA)
and a PCDATA content (IC).

Related to the second question about how to update a VXML document when
a basic change operation is produced the following actions are carried out. When
an insert operation is made, the new element /attribute/content is inserted in its
position setting the v:start attribute to the new identifier version and the v:end
attribute to "now” value. In the case of a delete operation, it is only necessary to
change the v:end attribute of all affected items setting them to the new identifier
version. For update operations the v:end attribute for the current item is set to
the new identifier version and the new element/attribute/content is added and
its version region attribute is set as in the insert operation. In the case of a move
operation, the affected items are modified as in the update operation.

One of the most important advantages of using an XML document to define
the update operations, is that it allows us to manage changes for any markup
language based on the XML specification, since these update operations are
common to all of them. Thus, to specify the changes of a certain XML language,
it would be only necessary to define it by means of these primitives. In this way,
as a future work we will use this technique to manage versions of XSLT and SVG
document. Moreover, this technique can be also used to represent the version
history of an XML schema document.

Managing Branch Versioning in Versioned /Temporal XML Documents 115
4 Retrieval in vDocuments

One of the main advantages of this proposal is the wide set of queries we can
specify both using version and temporal axis. In this way, classical temporal XML
queries can be made such as temporal projection, snapshot, etc and also version
queries such as version projection, snapshot version, etc. Here, we will show some
of them that are used in the following section to measure our technique.

Q1: Version snapshot query

In order to retrieve the valid labels for a given version it will be necessary to
analyze which versions are included in a version region and check if the requested
version belongs to them. This occurs only if 1) the given version is among the
descendants in the "start" version identifier in the version tree or even is itself
and 2) the given version is not among the descendants or is itself in all version
identifiers for "end" attribute. To do this effectively, we have to obtain which
versions are in a version region and check if they contain the requested version.
We use the id() function provided by XPath to obtain the versions by means
of dereference the version/s in the version tree which v:start and v:End refer to
(they are defined as IDRef and IDRefs datatypes respectively) and thereby we
can easily obtain their descendants and check the constraints said before.

We have defined a version operator called Vmeets as a user-defined function
(line 1) that check (line 4) if the given version belongs only to the v:start at-
tribute (line 2) and not to the v:End attribute (line 3). That query retrieves all
nodes valid for Vg version (line 6). In the same way, other version operators are
able to been defined as: Vancestors, Vparent, Vcontains, etc.

1. declare function f:Vmeets(3p,$v) as zs:boolean{

2. let $start:=8p/id($p/@u:start) /descendant-or-self::version/@rml:id
3. let $end:=3p/id($p/@u:end)/descendant-or-self::version/@zml:id

4. return (($start=3v) and (not($end=$v))) };

5. <data>{

6. for $s in //versioned_ doc//*[f:Vmeets(.,’V8’)]

7. return $s

8. }</data>

Q2: Count the number of the title element valid for version V8 using Xpath
Using the id() function, we can query the vDocument using another XML stan-
dard query language such as XPath. In the following query all title elements
valid for version Vg are counted.

count (//*title[not(id(./@u:end) /descendant-or-self::version/@zml:id="V8’) and
(id(./@u:start) /descendant-or-self::version/@zml:id="V8’)]

Q3: Temporal snapshot query

Since temporal information has been added to our vDocuments, we can re-
trieve it by means of the valid-time axis. To do this, it is necessary to find out in
which version the given time belongs to. If a time instant is given, a user-defined

116 L.J.A. Rosado, A.P. Marquez, and J.M. Gil

function called ¢tmeets (line 1) retrieves which version contains this time. After
that, the previous version snapshot is executed (line 5, 6). In the case of a time
interval, a user-defined function called tContain is defined which verifies which
version contains the requested time interval. Q1 query using the valid-time axis
is shown below.

1. declare function f:tmeets($time) as zs:string{

2. let $id:= //version[(./@tustart<=§time) and (./@tvend>=§time)[/@zml:id
3. return $id };

4. <data>{

5. let $version:=f:tmeets("2007-02-20") //This instant belongs to V8

6. for $s in //versioned_ doc//*[f:Vmeets(.,$version)]

7. return $s

8. }</data>

5 Experimentation and Implementation

In this section several experiments have been carried out in order to compare our
technique to a timestamp XML approach and some details of its implementation
are also shown.

5.1 Experimental

The testing machine is a Pentium Mobile 1,8GHz PC with Linux (Ubuntu), with
1024MB memory and a 120GB IDE hard drive. The data shown in the graphics
are the performance average on 3 identical tests. We have developed a Java
application to generate a large amount of version data where the operations from
the table[[are selected at random, assigning a higher probability to the insertion
of elements. Once selected a primitive, the current version and the affected node
are selected at random too. The tests have been carried out on cases of lineal
versioning and branch versioning. In the latter case, we have selected at random
the version we want to update according to the following probabilities a 20%,
50% and 80% possibility of choosing a different version from the current one.

The experiments were carried out on 5, 10 and 20 changes per version, for 100,
60 and 30 versions respectively thereby evaluating the behavior of our system in
the following cases: a large number of versions with few changes (100 versions
- 5 changes), a medium number of versions with some changes (60-10) and a
small number of versions with many changes (30-20). In the experiment, we
selected the ACM XML Sigmod Record supplied in [26] (November of 2002)
where three different versions of this document were used: small, medium and
large. All characteristics of these documents can be consulted in figure @l

We have also developed a temporal timestamped XML solution (tstamp) in
order to compare it with ours. In this way, we have chosen the technique shown
in [8], based on adding a time interval to each label in the document, allowing the
incorporation of temporal information in the XML document. All our versioned
lineal XML documents have been converted to temporal ones. The resulting

Managing Branch Versioning in Versioned /Temporal XML Documents 117

Size Element Attribute Text
Small 42028 687 411 417
o e | Medium 225487 3688 2285 2317
Large 545368 8930 5677 5769

Size Element Attribute veattrib vidata

Smatt 95519 691 4545 411 417
ACM Sigmod ["y o iim 522093 3692 24820 2285 2317
Large 1281000 8934 60976 5677 5769
Type. Versions/Changes Tstamp Lineal 20,00% 50,00% 80,00%
S. 100/5 191113 222245 229027 229992 236706
s. 60/10 203406 250637 240359 261261
s. 30/20 197510 216406 219185 233103 233238
M. 100/5 557512 640329 653778 669064 647238
Vdocument | M 60/10 584815 660593 671610 658810 674334
M. 30/20 583351 651263 659213 664908 658625
L. 100/5 1216703 1386684 1406887 1391842 1395761
L. 60/10 1250378 1415846 1424534 1403901 1405975
L. 30/20 1245227 1407287 1422153 1409936 1412069

Fig. 4. a. Characteristics of the document. b. Resulting vDocument size.

version size document is shown in figure @b where it can be seen that the size of
our vDocuments are a bit higher than the timestamped solution.

The retrieval time obtained refers to the transformation time in a client ap-
plication, regardless of the document loading time in memory or transmission
where the retrieval time has been calculated on 3 performances. To do it, we have
used the Saxon processor [27] where the following queries have been carried out:

*

Q1: Version/Temporal Snapshot query using XSLT.

Q2: Find the total number of title elements valid for a version in XPath.

x Q3: Retrieve those authors and their descendants valid for a version in
Xquery.

* Q4: Snapshot query using an optimized XSLT.

*

In figure Bla the retrieval time (measured in ms) obtained using an XSLT
stylesheet is shown (query Q1). This figure shows the retrieval time using the
timestamped solution (Tstamp), using the versionstamp solution (VStamp) and
the versionstamp solution on a temporal level (VTstamp). As we can see, our
solution here behaves less efficiently than the timestamp solution, since the time
solution uses the operators <= and >= to verify if a time belongs to a time
interval, meanwhile in our process we have to retrieve all descendant identifiers
for the v:start and v:end attributes. In this way, both Vstamp and VTStamp
greatly depend on the number of versions that the document has as well as the
size of it. In some cases (short documents or documents with few changes) our
performance is quite similar to the timestamped solution, however our solution
in lineal versioning performance is poorer. This can be seen in figure Blb and
figure [Gla where the retrieval time for Q2 and Q3 query are shown.

To avoid this situation, we have developed an optimized solution that con-
sist of storing within each version their descendants allowing us not to have to
constantly recover this information in each query. Therefore, each version in the
version tree will have a new attribute called descen that stores its descendants.
In this way if we want to check if a requested version belongs to a version re-
gion, it is only necessary to verify if the descen attribute for the v:start version

118 L.J.A. Rosado, A.P. Marquez, and J.M. Gil

Q1.XSLT Retrieval time: Tstamp vs Vstamp vs VTstamp Q2. Retrieval time of an element in XPath
400

1400 nl 350 N
1200 — 300 i .
1000 B — || 250 I .
800 200 I o
600 r 150 | - I
400 100] b
50 1 il

o WAL A o JCRE R ML AR L
0 T T T T T T T T

S S8 S M M M L L L

;)) y . s s s M M M L L L
100/5 60/10 30/20 1005 60/10 30/20 100/5 60/10 30/20 1005 6010 3020 1005 6040 3020 1005 600 3020

‘DTstamp W Vstamp Lineal OVstamp50% OVstamp 80%

W Vistamp Lineal @ Vistamp 50% W Vistamp 80% B {stamp Leal

O Tstamp
0 Vstamp 50% 0 Vstamp 80%

Fig. 5. Retrieval time a. Q1 query b. Q2 query

Q3. Retrieval time of an element in XQuery Q4. Retrieval time: Optimized XSLT
1400 n
1 N
1800 1200
1600 1 \
1000
1400 / AN W
1200 / 800 ==
1000 / \ 600
80 /\ / 400 4
600 <~ e
400 / - 200 4
200 1 E%S/ . 0 ‘ ‘ : : : : : :
0 ‘ ‘ ‘ ‘ . ‘ ‘ s. s S M M M L L L
1 1 20 1 1 20 1 1 2
s s mooMowoL L L 00/5 60/10 30/20 100/5 60/10 30220 100/5 60/10 30/20
10055 60/10 30/20 10055 60/10 30/20 1005 60/10 30120 ~Tstamp “&-Vstamp Lineal Vstamp 80%
Optimized. Lin. % Optimized. 80%
[+ Tstamp -=- Lineal +20,00% +50,00% + 80,00%)

Fig. 6. Retrieval time a. Q3 query. Q4 query.

contains the given version and it is not present in the v:end attribute. We can
see this improvement in figure [0l where we can verify that using it the retrieval
time is reduced considerably and in some cases the retrieval time is quite close
to the timestamped solution. In those cases that our solution had its poorest
performance (large documents or several versions) this time has been reduced
by up to 50%. Notice that, this solution is almost independent from the number
of versions, since it is not necessary to retrieve the descendants of the v:start
and v:end attribute.

Although it can be argued that our solution performs poorly in large doc-
uments, it offers many advantages that timestamped solutions cannot: we can
query versioned documents both on a version and a temporal level, manage
branch versioning that is not supported in timestamped solutions and extend
the number of temporal /version queries that can be made.

Managing Branch Versioning in Versioned /Temporal XML Documents 119

5.2 Implementation

The system has completely developed using XML technology. To execute it we
just need an XSL stylesheets, Xquery or XPath processor with support for id()
XPath function (tested in Exist, Saxon and Xsltproc processor). To check its
functionality, we have developed a set of Web Services to manage versions of
XML documents. Our proposal is to develop a generic engine to store, manage
and query the different versions from an XML document through Internet thanks
to Web Services without to set any additional software. The most important
advantages of this engine is the possibility to offer them to third-party clients
to either version their data or to develop a more complex versioning system by
means of invoking our Web Services.

Table 2. Versioning Web Services

Group Web Service Brief description

Generates an XML versioned document from an

C i doc2vd
onversion oc2vdoc XML document.
. Retrieves the reconstructed XML document from
Conversion vdoc2doc . .
a specific version
Retrieves a list of documents/versioned
Get getDocs/VDocs documents stored in the system for a specific
user.
Get get Versions Retrieves the available versions for a vDocument
Got getInfo Gives information about each update operation
(parameter, error, etc)
Query getQuery Executes XPath or XQuery in a vDocument.
o ion f ifi
Changes Primitive Used to run an update operation for a specific
vDocument
Changes execTrans Executes an XML transaction document

Changes exec_ Randontrans Executes an XML random transaction document
Allows us to upload XML/VXML to the
repository
Allows us to delete a XML /versioned document
from the repository

Diff. GetDiff Obtains the differences between two versions
Diff. et XMLDIff Retrieves a specific version of the document from
the Vdocument.

Manage uploadXML/ VXML

Manage deleteXML/ VXML

Our Services have been developed using Java, more specifically the APT called
AXIS [24] from the Apache Software Foundation. AXIS has proven itself to be a
reliable and stable base on which to implement Java Web services. Initially, we
propose a set of 16 Web Services that can be classified in six groups as shown in
table 2] (parameters of each service is omitted in this work due to lack space). In
order to carry out some trials on these services we developed a client prototype
too as it is shown in the following URL: http://exis.unex.es,/versionado, .

120 L.J.A. Rosado, A.P. Marquez, and J.M. Gil
6 Conclusions and Future Work

Document version management has been used for years mainly in collaborative
environments by means of, on the one hand, diff lined-based approaches or delta
XML, however these solutions are not recommended in XML documents since
they can neither validate nor query the XML versioned document and, on the
other hand, XML temporal document solutions, based on the timestamped tech-
nique, which have difficulty in supporting non-lineal versioning. To solve these
problems we proposed a versionstamp technique in [9].

In this paper, we have extended it by means of adding temporal informa-
tion to each version included in the vDocuments. Not only does it allow us to
query the vDocuments on a temporal and version level but also we can manage
branch versioning in temporal documents. Moreover we have also defined the ba-
sic updated operations common to whatever XML document, describing them by
means of an XML document called XML transactional document which allows
us to manage changes for any markup language based on the XML specification.

Finally we have compared our solution to a timestamped XML one. Although
it performs poorly in some cases we have improved it by means of an optimized
solution thereby offering us many advantages that timestamped solutions cannot
achieve. Moreover, we have developed a set of Web services which do not have
portability restrictions and allows us not only to manage the different versions of
an XML document but also to validate, transform, store and query them in an
easy way. Since our proposal is open, it can be used for third-party clients either
to manage their documents or to extend them by incorporating new features.

As future work we propose these following steps:

* To analyze new queries in XML versioned documents as range queries, tem-
poral/version queries, temporal overlapping queries, etc.

x Compare the results storing the documents in native XML databases and in
relational databases.

x To define the version region by means of a set of sub-graph nodes allowing
us to represent element temporal interval.

* To implement a versioning system based on XUpdate.

x To extend these services by incorporating some features of traditional version
control systems such as security, lock files, indexing the document to run the
queries faster, etc.

+ To apply our versionstamp technique to other XML markup languages such
as XSLT stylesheets, SVG graphics or even to XML office documents as
OpenOffice or Microsoft Office.

References

1. W3C, http://www.w3c.org
2. CVS. Concurrent Versions System, http://www.cvshome.org
3. Subversion, http://subversion.tigris.org/

http://www.w3c.org
http://www.cvshome.org
http://subversion.tigris.org/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.
23.
24.
25.

26.
27.

Managing Branch Versioning in Versioned /Temporal XML Documents 121

Cobena, G., Abiteboul, S., Marian, A.: Detecting changes in XML documents. In:
Proceeding of the 18th International Conference on Data Engineering (2002)
Chien, S-Y., Tsotras, V.J., Zaniolo, C.: Efficient management of multiversion doc-
uments by object referencing. VLDB (2001)

Vagena, Z., Moro, M.M., Vassilis J.: Tsotras. Supporting Branched Versions on
XML Documents. In: RIDE (2004)

Salzberg, B., Jiang, L., Lomet, D.B., Barrena, M., Shan, J., Kanoulas, E.: A Frame-
work for Access Methods for Versioned Data. In: Bertino, E., Christodoulakis, S.,
Plexousakis, D., Christophides, V., Koubarakis, M., Béhm, K., Ferrari, E. (eds.)
EDBT 2004. LNCS, vol. 2092, Springer, Heidelberg (2004)

Wang, F., Zaniolo, C.: XBiT: An XML-based Bitemporal Data Model. In: Atzeni,
P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp.
810-824. Springer, Heidelberg (2004)

Rosado, L.A., Marquez, A.P., Gonzalez, J.M.F.: Representing versions in XML
documents using versionstamp. ECDM (2006)

Ronnau, S., Scheffczyk, J., Borghoff, U.M.: Towards XML Version Control of Office
Document. In: Proceedings of ACM DocEng. (2005)

Grandi, F., Mandreoli, F.: The valid web: An XML /XSL infrastructure for tempo-
ral management of web documents. In: ADVIS (2000)

Dyreson, C.E.: Observing transaction-time semantics with TTXPath. In: WISE
(2001)

Zhang, S., Dyreson, C.E.: Adding valid time to XPath. In: Bhalla, S. (ed.) DNIS
2002. LNCS, vol. 2544, pp. 20-42. Springer, Heidelberg (2002)

Amagasa, T., Yoshikawa, M., Uemura, S.: A data model for temporal XML docu-
ments. In: Ibrahim, M., Kiing, J., Revell, N. (eds.) DEXA 2000. LNCS, vol. 1873,
Springer, Heidelberg (2000)

Wuwongse, V., Yoshikawa, M., Amagasa, T.: Temporal Versioning of XML Docu-
ments. In: Chen, Z., Chen, H., Miao, Q., Fu, Y., Fox, E., Lim, E.-p. (eds.) ICADL
2004. LNCS, vol. 3334, Springer, Heidelberg (2004)

Galante, R.M., Santos, C.S., Edelweiss, N., Moreira, A.S.: Temporal and Versioning
Model for Schema Evolution in Object-Oriented Databases. In: Transactions on
Data and Knowledge Engineering (2005)

Leonardi, E., Bhowmick, S.S., Madria, S.K.: Xandy: Detecting Changes on Large
Unordered XML Documents Using Relational Databases. In: Zhou, L.-z., Ooi, B.-
C., Meng, X. (eds.) DASFAA 2005. LNCS, vol. 3453, Springer, Heidelberg (2005)
Mouat, A.: XML diff and patch utilities. Master’s thesis, Heriot-Watt University,
Edinburgh, Scotland (2002)

Wang, Y., DeWitt, D.J., Cai, J.: X-Diff: An effective change detection algorithm
for XML-documents. In: Conf. on Data Engineering, IEEE CS Press, India (2003)
Xquery Update. http://www.w3.org/TR/xqupdate/

Snodgrass, R.T.: The TSQL2 Temporal Query Language. Kluwer Academic Pub-
lishers, Dordrecht (1995)

Jensen, C.S., Dyreson, C.E., et al. (eds.): The Consensus Glossary of Temporal
Database Concepts (February 1998)

Tatarinov, 1., Ives, Z.G., Halevy, A.Y., Weld, D.S.: Updating XML. In: ACM Sig-
mod. (2001)

Apache AXIS. Retrieved From: http://ws.apache.org/axis/

JXydiff. http://potiron.loria.fr/projects/jxydiff

ACM XML Sigmod Record. http://www.sigmod.org/record/xml

Saxon. http://www.saxonica.com

http://www.w3.org/TR/xqupdate/
http://ws.apache.org/axis/
http://potiron.loria.fr/projects/jxydiff
http://www.sigmod.org/record/xml
http://www.saxonica.com

	Managing Branch Versioning in Versioned/Temporal XML Documents
	Introduction
	State-of-the-Art
	XML Versioned Documents
	Versionstamp Technique
	Temporal Time in vDocuments
	Changing and Updating a VXML Document

	Retrieval in vDocuments
	Experimentation and Implementation
	Experimental
	Implementation

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

